def part_int_daeg1_pseudo_ellipse_22(phi, x, y):
    """The theta-sigma partial integral of the 1st degree Frame Order matrix element 22 for the pseudo-ellipse.

    @param phi:     The azimuthal tilt-torsion angle.
    @type phi:      float
    @param x:       The cone opening angle along x.
    @type x:        float
    @param y:       The cone opening angle along y.
    @type y:        float
    @return:        The theta-sigma partial integral.
    @rtype:         float
    """

    # Theta max.
    tmax = tmax_pseudo_ellipse(phi, x, y)

    # The theta-sigma integral.
    return sin(tmax)**2
def part_int_daeg2_pseudo_ellipse_free_rotor_88(phi, x, y):
    """The theta-sigma partial integral of the 2nd degree Frame Order matrix for the free rotor pseudo-ellipse.

    @param phi:     The azimuthal tilt-torsion angle.
    @type phi:      float
    @param x:       The cone opening angle along x.
    @type x:        float
    @param y:       The cone opening angle along y.
    @type y:        float
    @return:        The theta-sigma partial integral.
    @rtype:         float
    """

    # Theta max.
    tmax = tmax_pseudo_ellipse(phi, x, y)

    # The theta-sigma integral.
    return cos(tmax)**3
def part_int_daeg2_pseudo_ellipse_torsionless_55(phi, x, y):
    """The theta partial integral of the 2nd degree Frame Order matrix for the torsionless pseudo-ellipse.

    @param phi:     The azimuthal tilt-torsion angle.
    @type phi:      float
    @param x:       The cone opening angle along x.
    @type x:        float
    @param y:       The cone opening angle along y.
    @type y:        float
    @return:        The theta partial integral.
    @rtype:         float
    """

    # Theta max.
    tmax = tmax_pseudo_ellipse(phi, x, y)

    # The theta integral.
    return 2.0*sin(phi)**2*cos(tmax)**3 + 3.0*cos(phi)**2*cos(tmax)**2
Пример #4
0
def part_int_daeg2_pseudo_ellipse_free_rotor_88(phi, x, y):
    """The theta-sigma partial integral of the 2nd degree Frame Order matrix for the free rotor pseudo-ellipse.

    @param phi:     The azimuthal tilt-torsion angle.
    @type phi:      float
    @param x:       The cone opening angle along x.
    @type x:        float
    @param y:       The cone opening angle along y.
    @type y:        float
    @return:        The theta-sigma partial integral.
    @rtype:         float
    """

    # Theta max.
    tmax = tmax_pseudo_ellipse(phi, x, y)

    # The theta-sigma integral.
    return cos(tmax)**3
Пример #5
0
def part_int_daeg2_pseudo_ellipse_torsionless_55(phi, x, y):
    """The theta partial integral of the 2nd degree Frame Order matrix for the torsionless pseudo-ellipse.

    @param phi:     The azimuthal tilt-torsion angle.
    @type phi:      float
    @param x:       The cone opening angle along x.
    @type x:        float
    @param y:       The cone opening angle along y.
    @type y:        float
    @return:        The theta partial integral.
    @rtype:         float
    """

    # Theta max.
    tmax = tmax_pseudo_ellipse(phi, x, y)

    # The theta integral.
    return 2.0 * sin(phi)**2 * cos(tmax)**3 + 3.0 * cos(phi)**2 * cos(tmax)**2
Пример #6
0
def part_int_daeg1_pseudo_ellipse_22(phi, x, y):
    """The theta-sigma partial integral of the 1st degree Frame Order matrix element 22 for the pseudo-ellipse.

    @param phi:     The azimuthal tilt-torsion angle.
    @type phi:      float
    @param x:       The cone opening angle along x.
    @type x:        float
    @param y:       The cone opening angle along y.
    @type y:        float
    @return:        The theta-sigma partial integral.
    @rtype:         float
    """

    # Theta max.
    tmax = tmax_pseudo_ellipse(phi, x, y)

    # The theta-sigma integral.
    return sin(tmax)**2
    def pseudo_ellipse(phi):
        """The pseudo-ellipse wrapper formula."""

        return tmax_pseudo_ellipse(phi, theta_x, theta_y)
Пример #8
0
    def pseudo_ellipse(phi):
        """The pseudo-ellipse wrapper formula."""

        return tmax_pseudo_ellipse(phi, theta_x, theta_y)
def pcs_numeric_int_pseudo_ellipse_torsionless_qrint(points=None, theta_x=None, theta_y=None, c=None, full_in_ref_frame=None, r_pivot_atom=None, r_pivot_atom_rev=None, r_ln_pivot=None, A=None, R_eigen=None, RT_eigen=None, Ri_prime=None, pcs_theta=None, pcs_theta_err=None, missing_pcs=None, error_flag=False):
    """Determine the averaged PCS value via numerical integration.

    @keyword points:            The Sobol points in the torsion-tilt angle space.
    @type points:               numpy rank-2, 3D array
    @keyword theta_x:           The x-axis half cone angle.
    @type theta_x:              float
    @keyword theta_y:           The y-axis half cone angle.
    @type theta_y:              float
    @keyword c:                 The PCS constant (without the interatomic distance and in Angstrom units).
    @type c:                    numpy rank-1 array
    @keyword full_in_ref_frame: An array of flags specifying if the tensor in the reference frame is the full or reduced tensor.
    @type full_in_ref_frame:    numpy rank-1 array
    @keyword r_pivot_atom:      The pivot point to atom vector.
    @type r_pivot_atom:         numpy rank-2, 3D array
    @keyword r_pivot_atom_rev:  The reversed pivot point to atom vector.
    @type r_pivot_atom_rev:     numpy rank-2, 3D array
    @keyword r_ln_pivot:        The lanthanide position to pivot point vector.
    @type r_ln_pivot:           numpy rank-2, 3D array
    @keyword A:                 The full alignment tensor of the non-moving domain.
    @type A:                    numpy rank-2, 3D array
    @keyword R_eigen:           The eigenframe rotation matrix.
    @type R_eigen:              numpy rank-2, 3D array
    @keyword RT_eigen:          The transpose of the eigenframe rotation matrix (for faster calculations).
    @type RT_eigen:             numpy rank-2, 3D array
    @keyword Ri_prime:          The empty rotation matrix for the in-frame isotropic cone motion, used to calculate the PCS for each state i in the numerical integration.
    @type Ri_prime:             numpy rank-2, 3D array
    @keyword pcs_theta:         The storage structure for the back-calculated PCS values.
    @type pcs_theta:            numpy rank-2 array
    @keyword pcs_theta_err:     The storage structure for the back-calculated PCS errors.
    @type pcs_theta_err:        numpy rank-2 array
    @keyword missing_pcs:       A structure used to indicate which PCS values are missing.
    @type missing_pcs:          numpy rank-2 array
    @keyword error_flag:        A flag which if True will cause the PCS errors to be estimated and stored in pcs_theta_err.
    @type error_flag:           bool
    """

    # Clear the data structures.
    for i in range(len(pcs_theta)):
        for j in range(len(pcs_theta[i])):
            pcs_theta[i, j] = 0.0
            pcs_theta_err[i, j] = 0.0

    # Loop over the samples.
    num = 0
    for i in range(len(points)):
        # Unpack the point.
        theta, phi = points[i]

        # Calculate theta_max.
        theta_max = tmax_pseudo_ellipse(phi, theta_x, theta_y)

        # Outside of the distribution, so skip the point.
        if theta > theta_max:
            continue

        # Calculate the PCSs for this state.
        pcs_pivot_motion_torsionless_qrint(theta_i=theta, phi_i=phi, full_in_ref_frame=full_in_ref_frame, r_pivot_atom=r_pivot_atom, r_pivot_atom_rev=r_pivot_atom_rev, r_ln_pivot=r_ln_pivot, A=A, R_eigen=R_eigen, RT_eigen=RT_eigen, Ri_prime=Ri_prime, pcs_theta=pcs_theta, pcs_theta_err=pcs_theta_err, missing_pcs=missing_pcs)

        # Increment the number of points.
        num += 1

    # Calculate the PCS and error.
    for i in range(len(pcs_theta)):
        for j in range(len(pcs_theta[i])):
            # The average PCS.
            pcs_theta[i, j] = c[i] * pcs_theta[i, j] / float(num)

            # The error.
            if error_flag:
                pcs_theta_err[i, j] = abs(pcs_theta_err[i, j] / float(num)  -  pcs_theta[i, j]**2) / float(num)
                pcs_theta_err[i, j] = c[i] * sqrt(pcs_theta_err[i, j])
                print("%8.3f +/- %-8.3f" % (pcs_theta[i, j]*1e6, pcs_theta_err[i, j]*1e6))