def apply_tilt_map(a, gt, dx, dy, dz): x, y = geolib.get_xy_ma(a, gt) tilt = dx * x + dy * y + dz out = a - tilt return out, tilt
print "Populating matrices: A=(%ix%i), b=(%i)" % (M,N,M) xrefa = [] yrefa = [] for k in range(t.size): #Check source #If ATM/LVIS, tilt and offset should be 0, increased weight on dhdt #Trans should have increased weight on dhdt, not tilt #Not trans - Remove ASP bias #Mono reduced weight on tilt #print k a = testn[k] #za should already have ref removed xa,ya,za = malib.get_xyz(a) xam,yam = geolib.get_xy_ma(a, gt) xam = xam.compressed() yam = yam.compressed() zam = a.compressed() #Normalize with global offset and scaling #xan = (xa - xref)/x.ptp() #yan = (ya - yref)/x.ptp() #xan = xa #yan = ya #Note: want to use local offset for each DEM #Constraints are set for individual DEMs #Proper tilt values can be very high if global offset is used xref = np.mean(xam) xrefa.append(xref) xan = xam - xref yref = np.mean(yam)