Пример #1
0
    def print_axis_system_full(self):
        """Print out of the full system to file."""

        # Open the file.
        file = open(self.save_path+sep+'axis_system', 'w')

        # Header.
        file.write("\n")
        file.write("The motional axis system\n")
        file.write("========================\n")

        # The full axis system.
        file.write("\nThe full axis system:\n")
        string = ''
        for i in range(3):
            string += '['
            for j in range(3):
                string += "%24.20f" % self.axes[i, j]
            string += ']\n'
        file.write(string)

        # The Euler angles.
        a, b, g = R_to_euler_zyz(self.axes)
        file.write("\nEuler angles of the system:\n")
        file.write("    alpha: %.20f\n" % a)
        file.write("    beta:  %.20f\n" % b)
        file.write("    gamma: %.20f\n" % g)

        # The spherical angle system.
        r, t, p = cartesian_to_spherical(self.axes[:, 2])
        file.write("\nSpherical angles of the z-axis:\n")
        file.write("    theta: %.20f\n" % t)
        file.write("    phi:   %.20f\n" % wrap_angles(p, 0, 2*pi))
Пример #2
0
def eigen_system():
    """Recreate the eigensystem parameters."""

    # The centre of masses of each domain (from the system_create.log file).
    N_COM = array([41.739, 6.03, -0.764], float64)
    C_COM = array([26.837, -12.379, 28.342], float64)

    # The Z-axis as the inter CoM vector.
    z_axis = C_COM - N_COM
    disp = norm(z_axis)
    z_axis /= disp

    # The eigenframe (partly from the system_create.log file).
    eigensystem = transpose(
        array([[
            -7.778375610280605e-01, 6.284649244351433e-01,
            -7.532653237683726e-04
        ], [-0.487095774865268, -0.60362450312215, -0.63116968030708], z_axis],
              float64))

    # Convert to Euler angles.
    a, b, g = R_to_euler_zyz(eigensystem)

    # Return the parameters.
    return a, b, g, disp
Пример #3
0
def calc_euler(rotation):
    """Calculate the zyz notation Euler angles.

    @param rotation:    The rotation matrix.
    @type rotation:     numpy 3D, rank-2 array
    @return:            The Euler angles alpha, beta, and gamma in zyz notation.
    @rtype:             tuple of float
    """

    return R_to_euler_zyz(rotation)
Пример #4
0
def tensor_eigen_system(tensor):
    """Determine the eigenvalues and vectors for the tensor, sorting the entries.

    @return:    The eigenvalues, rotation matrix, and the Euler angles in zyz notation.
    @rtype:     3D rank-1 array, 3D rank-2 array, float, float, float
    """

    # Eigenvalues.
    R, Di, A = svd(tensor)
    D_diag = zeros((3, 3), float64)
    for i in range(3):
        D_diag[i, i] = Di[i]

    # Reordering structure.
    reorder_data = []
    for i in range(3):
        reorder_data.append([Di[i], i])
    reorder_data.sort()

    # The indices.
    reorder = zeros(3, int)
    Di_sort = zeros(3, float)
    for i in range(3):
        Di_sort[i], reorder[i] = reorder_data[i]

    # Reorder columns.
    R_new = zeros((3, 3), float64)
    for i in range(3):
        R_new[:, i] = R[:, reorder[i]]

    # Switch from the left handed to right handed universes (if needed).
    if norm(cross(R_new[:, 0], R_new[:, 1]) - R_new[:, 2]) > 1e-7:
        R_new[:, 2] = -R_new[:, 2]

    # Reverse the rotation.
    R_new = transpose(R_new)

    # Euler angles (reverse rotation in the rotated axis system).
    gamma, beta, alpha = R_to_euler_zyz(R_new)

    # Collapse the pi axis rotation symmetries.
    if alpha >= pi:
        alpha = alpha - pi
    if gamma >= pi:
        alpha = pi - alpha
        beta = pi - beta
        gamma = gamma - pi
    if beta >= pi:
        alpha = pi - alpha
        beta = beta - pi

    # Return the values.
    return Di_sort, R_new, alpha, beta, gamma
Пример #5
0
    def rotation_hypersphere(self):
        """Random rotation using 4D hypersphere point picking and return of torsion-tilt angles."""

        # Generate a random rotation.
        R_random_hypersphere(self.rot)

        # Rotate the frame.
        frame = dot(self.eig_frame_T, dot(self.rot, EIG_FRAME))

        # Decompose the frame into the zyz Euler angles.
        alpha, beta, gamma = R_to_euler_zyz(frame)

        # Convert to tilt and torsion angles (properly wrapped) and return them.
        theta = beta
        phi = wrap_angles(gamma, -pi, pi)
        sigma = wrap_angles(alpha + gamma, -pi, pi)
        return theta, phi, sigma
Пример #6
0
    def rotation_z_axis(self):
        """Random rotation around the z-axis and return of torsion-tilt angles"""

        # Random angle between -pi and pi.
        angle = uniform(-pi, pi)

        # Generate the rotation matrix.
        axis_angle_to_R(self.z_axis, angle, self.rot)

        # Decompose the rotation into the zyz Euler angles.
        alpha, beta, gamma = R_to_euler_zyz(self.rot)

        # Rotate the frame.
        self.rot = dot(EIG_FRAME, dot(self.rot, self.eig_frame_T))

        # Convert to tilt and torsion angles (properly wrapped) and return them.
        theta = beta
        phi = wrap_angles(gamma, -pi, pi)
        sigma = wrap_angles(alpha + gamma, -pi, pi)
        return theta, phi, sigma
Пример #7
0
    def build_axes_pivot_com(self):
        """A standard axis system for the CaM system with the z-axis along the pivot-com axis."""

        # The z-axis for the rotations (the pivot point to CoM axis).
        axis_z = self.COM - self.PIVOT
        axis_z = axis_z / norm(axis_z)

        # The y-axis (to check the torsion angle).
        axis_y = cross(axis_z, array([0, 0, 1]))
        axis_y = axis_y / norm(axis_y)

        # The x-axis.
        axis_x = cross(axis_y, axis_z)
        axis_x = axis_x / norm(axis_x)

        # The eigenframe.
        self.axes = transpose(array([axis_x, axis_y, axis_z]))
        alpha, beta, gamma = R_to_euler_zyz(self.axes)

        # Printout.
        print("CoM-pivot axis: %s, norm = %s" % (repr(axis_z), norm(axis_z)))
        print("Rotation axis: %s, norm = %s" % (repr(self.axes[:, 2]), norm(self.axes[:, 2])))
        print("Full axis system:\n%s" % self.axes)
        print("Full axis system Euler angles:\n\talpha: %s\n\tbeta: %s\n\tgamma: %s" % (repr(alpha), repr(beta), repr(gamma)))
Пример #8
0
    def build_axes_alt(self):
        """An alternative axis system for the CaM system."""

        # The z-axis for the rotations (the pivot point to CoM axis).
        axis_z = self.COM - self.PIVOT
        axis_z = axis_z / norm(axis_z)

        # The y-axis (to check the torsion angle).
        axis_y = cross(axis_z, array([0, 0, 1]))
        axis_y = axis_y / norm(axis_y)

        # The x-axis.
        axis_x = cross(axis_y, axis_z)
        axis_x = axis_x / norm(axis_x)

        # The eigenframe.
        axes = transpose(array([axis_x, axis_y, axis_z]))

        # Init a rotation matrix.
        R = zeros((3, 3), float64)

        # Tilt the axes system by x degrees.
        tilt_axis = cross(axis_z, array([0, 0, 1]))
        tilt_axis = tilt_axis / norm(tilt_axis)
        axis_angle_to_R(tilt_axis, self.TILT_ANGLE * 2.0 * pi / 360.0, R)

        # Rotate the eigenframe.
        self.axes = dot(R, axes)
        alpha, beta, gamma = R_to_euler_zyz(self.axes)

        # Printout.
        print("Tilt axis: %s, norm = %s" % (repr(tilt_axis), norm(tilt_axis)))
        print("CoM-pivot axis: %s, norm = %s" % (repr(axis_z), norm(axis_z)))
        print("Rotation axis: %s, norm = %s" % (repr(self.axes[:, 2]), norm(self.axes[:, 2])))
        print("Full axis system:\n%s" % self.axes)
        print("Full axis system Euler angles:\n\talpha: %s\n\tbeta: %s\n\tgamma: %s" % (repr(alpha), repr(beta), repr(gamma)))
Пример #9
0
def kabsch(name_from=None,
           name_to=None,
           coord_from=None,
           coord_to=None,
           centre_type="centroid",
           elements=None,
           centroid=None,
           verbosity=1):
    """Calculate the rotational and translational displacements between the two given coordinate sets.

    This uses the U{Kabsch algorithm<http://en.wikipedia.org/wiki/Kabsch_algorithm>}.


    @keyword name_from:     The name of the starting structure, used for the printouts.
    @type name_from:        str
    @keyword name_to:       The name of the ending structure, used for the printouts.
    @type name_to:          str
    @keyword coord_from:    The list of atomic coordinates for the starting structure.
    @type coord_from:       numpy rank-2, Nx3 array
    @keyword coord_to:      The list of atomic coordinates for the ending structure.
    @type coord_to:         numpy rank-2, Nx3 array
    @keyword centre_type:   The type of centre to superimpose over.  This can either be the standard centroid superimposition or the CoM could be used instead.
    @type centre_type:      str
    @keyword elements:      The list of elements corresponding to the atoms.
    @type elements:         list of str
    @keyword centroid:      An alternative position of the centroid, used for studying pivoted systems.
    @type centroid:         list of float or numpy rank-1, 3D array
    @return:                The translation vector T, translation distance d, rotation matrix R, rotation axis r, rotation angle theta, and the rotational pivot defined as the centroid of the ending structure.
    @rtype:                 numpy rank-1 3D array, float, numpy rank-2 3D array, numpy rank-1 3D array, float, numpy rank-1 3D array
    """

    # Calculate the centroids.
    if centroid is not None:
        centroid_from = centroid
        centroid_to = centroid
    elif centre_type == 'centroid':
        centroid_from = find_centroid(coord_from)
        centroid_to = find_centroid(coord_to)
    else:
        centroid_from, mass_from = centre_of_mass(pos=coord_from,
                                                  elements=elements)
        centroid_to, mass_to = centre_of_mass(pos=coord_to, elements=elements)

    # The translation.
    trans_vect = centroid_to - centroid_from
    trans_dist = norm(trans_vect)

    # Calculate the rotation.
    R = kabsch_rotation(coord_from=coord_from,
                        coord_to=coord_to,
                        centroid_from=centroid_from,
                        centroid_to=centroid_to)
    axis, angle = R_to_axis_angle(R)
    a, b, g = R_to_euler_zyz(R)

    # Print out.
    if verbosity >= 1:
        print(
            "\n\nCalculating the rotational and translational displacements from %s to %s using the Kabsch algorithm.\n"
            % (name_from, name_to))
        if centre_type == 'centroid':
            print("Start centroid:          [%20.15f, %20.15f, %20.15f]" %
                  (centroid_from[0], centroid_from[1], centroid_from[2]))
            print("End centroid:            [%20.15f, %20.15f, %20.15f]" %
                  (centroid_to[0], centroid_to[1], centroid_to[2]))
        else:
            print("Start CoM:               [%20.15f, %20.15f, %20.15f]" %
                  (centroid_from[0], centroid_from[1], centroid_from[2]))
            print("End CoM:                 [%20.15f, %20.15f, %20.15f]" %
                  (centroid_to[0], centroid_to[1], centroid_to[2]))
        print("Translation vector:      [%20.15f, %20.15f, %20.15f]" %
              (trans_vect[0], trans_vect[1], trans_vect[2]))
        print("Translation distance:    %.15f" % trans_dist)
        print("Rotation matrix:")
        print("   [[%20.15f, %20.15f, %20.15f]" % (R[0, 0], R[0, 1], R[0, 2]))
        print("    [%20.15f, %20.15f, %20.15f]" % (R[1, 0], R[1, 1], R[1, 2]))
        print("    [%20.15f, %20.15f, %20.15f]]" % (R[2, 0], R[2, 1], R[2, 2]))
        print("Rotation axis:           [%20.15f, %20.15f, %20.15f]" %
              (axis[0], axis[1], axis[2]))
        print("Rotation euler angles:   [%20.15f, %20.15f, %20.15f]" %
              (a, b, g))
        print("Rotation angle (deg):    %.15f" % (angle / 2.0 / pi * 360.0))

    # Return the data.
    return trans_vect, trans_dist, R, axis, angle, centroid_to
Пример #10
0
def permute_axes(permutation='A'):
    """Permute the axes of the motional eigenframe to switch between local minima.

    @keyword permutation:   The permutation to use.  This can be either 'A' or 'B' to select between the 3 permutations, excluding the current combination.
    @type permutation:      str
    """

    # Check that the model is valid.
    allowed = MODEL_LIST_ISO_CONE + MODEL_LIST_PSEUDO_ELLIPSE
    if cdp.model not in allowed:
        raise RelaxError(
            "The permutation of the motional eigenframe is only valid for the frame order models %s."
            % allowed)

    # Check that the model parameters are setup.
    if cdp.model in MODEL_LIST_ISO_CONE:
        if not hasattr(cdp, 'cone_theta') or not is_float(cdp.cone_theta):
            raise RelaxError("The parameter values are not set up.")
    else:
        if not hasattr(cdp, 'cone_theta_y') or not is_float(cdp.cone_theta_y):
            raise RelaxError("The parameter values are not set up.")

    # The iso cones only have one permutation.
    if cdp.model in MODEL_LIST_ISO_CONE and permutation == 'B':
        raise RelaxError("The isotropic cones only have one permutation.")

    # The angles.
    cone_sigma_max = 0.0
    if cdp.model in MODEL_LIST_RESTRICTED_TORSION:
        cone_sigma_max = cdp.cone_sigma_max
    elif cdp.model in MODEL_LIST_FREE_ROTORS:
        cone_sigma_max = pi
    if cdp.model in MODEL_LIST_ISO_CONE:
        angles = array([cdp.cone_theta, cdp.cone_theta, cone_sigma_max],
                       float64)
    else:
        angles = array([cdp.cone_theta_x, cdp.cone_theta_y, cone_sigma_max],
                       float64)
    x, y, z = angles

    # The axis system.
    axes = generate_axis_system()

    # Start printout for the isotropic cones.
    if cdp.model in MODEL_LIST_ISO_CONE:
        print("\nOriginal parameters:")
        print("%-20s %20.10f" % ("cone_theta", cdp.cone_theta))
        print("%-20s %20.10f" % ("cone_sigma_max", cone_sigma_max))
        print("%-20s %20.10f" % ("axis_theta", cdp.axis_theta))
        print("%-20s %20.10f" % ("axis_phi", cdp.axis_phi))
        print("%-20s\n%s" % ("cone axis", axes[:, 2]))
        print("%-20s\n%s" % ("full axis system", axes))
        print("\nPermutation '%s':" % permutation)

    # Start printout for the pseudo-ellipses.
    else:
        print("\nOriginal parameters:")
        print("%-20s %20.10f" % ("cone_theta_x", cdp.cone_theta_x))
        print("%-20s %20.10f" % ("cone_theta_y", cdp.cone_theta_y))
        print("%-20s %20.10f" % ("cone_sigma_max", cone_sigma_max))
        print("%-20s %20.10f" % ("eigen_alpha", cdp.eigen_alpha))
        print("%-20s %20.10f" % ("eigen_beta", cdp.eigen_beta))
        print("%-20s %20.10f" % ("eigen_gamma", cdp.eigen_gamma))
        print("%-20s\n%s" % ("eigenframe", axes))
        print("\nPermutation '%s':" % permutation)

    # The axis inversion structure.
    inv = ones(3, float64)

    # The starting condition x <= y <= z.
    if x <= y and y <= z:
        # Printout.
        print("%-20s %-20s" % ("Starting condition", "x <= y <= z"))

        # The cone angle and axes permutations.
        if permutation == 'A':
            perm_angles = [0, 2, 1]
            perm_axes = [2, 1, 0]
            inv[perm_axes[2]] = -1.0
        else:
            perm_angles = [1, 2, 0]
            perm_axes = [2, 0, 1]

    # The starting condition x <= z <= y.
    elif x <= z and z <= y:
        # Printout.
        print("%-20s %-20s" % ("Starting condition", "x <= z <= y"))

        # The cone angle and axes permutations.
        if permutation == 'A':
            perm_angles = [0, 2, 1]
            perm_axes = [2, 1, 0]
            inv[perm_axes[2]] = -1.0
        else:
            perm_angles = [2, 1, 0]
            perm_axes = [0, 2, 1]
            inv[perm_axes[2]] = -1.0

    # The starting condition z <= x <= y.
    elif z <= x and x <= y:
        # Printout.
        print("%-20s %-20s" % ("Starting condition", "z <= x <= y"))

        # The cone angle and axes permutations.
        if permutation == 'A':
            perm_angles = [2, 0, 1]
            perm_axes = [1, 2, 0]
        else:
            perm_angles = [2, 1, 0]
            perm_axes = [0, 2, 1]
            inv[perm_axes[2]] = -1.0

    # Cannot be here.
    else:
        raise RelaxFault

    # Printout.
    print("%-20s %-20s" % ("Cone angle permutation", perm_angles))
    print("%-20s %-20s" % ("Axes permutation", perm_axes))

    # Permute the angles.
    if cdp.model in MODEL_LIST_ISO_CONE:
        cdp.cone_theta = (angles[perm_angles[0]] +
                          angles[perm_angles[1]]) / 2.0
    else:
        cdp.cone_theta_x = angles[perm_angles[0]]
        cdp.cone_theta_y = angles[perm_angles[1]]
    if cdp.model in MODEL_LIST_RESTRICTED_TORSION:
        cdp.cone_sigma_max = angles[perm_angles[2]]
    elif cdp.model in MODEL_LIST_FREE_ROTORS:
        cdp.cone_sigma_max = pi

    # Permute the axes (iso cone).
    if cdp.model in MODEL_LIST_ISO_CONE:
        # Convert the y-axis to spherical coordinates (the x-axis would be ok too, or any vector in the x-y plane due to symmetry of the original permutation).
        axis_new = axes[:, 1]
        r, cdp.axis_theta, cdp.axis_phi = cartesian_to_spherical(axis_new)

    # Permute the axes (pseudo-ellipses).
    else:
        axes_new = transpose(
            array([
                inv[0] * axes[:, perm_axes[0]], inv[1] * axes[:, perm_axes[1]],
                inv[2] * axes[:, perm_axes[2]]
            ], float64))

        # Convert the permuted frame to Euler angles and store them.
        cdp.eigen_alpha, cdp.eigen_beta, cdp.eigen_gamma = R_to_euler_zyz(
            axes_new)

    # End printout.
    if cdp.model in MODEL_LIST_ISO_CONE:
        print("\nPermuted parameters:")
        print("%-20s %20.10f" % ("cone_theta", cdp.cone_theta))
        if cdp.model == MODEL_ISO_CONE:
            print("%-20s %20.10f" % ("cone_sigma_max", cdp.cone_sigma_max))
        print("%-20s %20.10f" % ("axis_theta", cdp.axis_theta))
        print("%-20s %20.10f" % ("axis_phi", cdp.axis_phi))
        print("%-20s\n%s" % ("cone axis", axis_new))
    else:
        print("\nPermuted parameters:")
        print("%-20s %20.10f" % ("cone_theta_x", cdp.cone_theta_x))
        print("%-20s %20.10f" % ("cone_theta_y", cdp.cone_theta_y))
        if cdp.model == MODEL_PSEUDO_ELLIPSE:
            print("%-20s %20.10f" % ("cone_sigma_max", cdp.cone_sigma_max))
        print("%-20s %20.10f" % ("eigen_alpha", cdp.eigen_alpha))
        print("%-20s %20.10f" % ("eigen_beta", cdp.eigen_beta))
        print("%-20s %20.10f" % ("eigen_gamma", cdp.eigen_gamma))
        print("%-20s\n%s" % ("eigenframe", axes_new))
Пример #11
0
CONE_SIGMA_MAX = 30.0 / 360.0 * 2.0 * pi

# Reconstruct the rotation axis.
AXIS = zeros(3, float64)
spherical_to_cartesian([1, AXIS_THETA, AXIS_PHI], AXIS)

# Create a full normalised axis system.
x = array([1, 0, 0], float64)
y = cross(AXIS, x)
y /= norm(y)
x = cross(y, AXIS)
x /= norm(x)
AXES = transpose(array([x, y, AXIS], float64))

# The Euler angles.
eigen_alpha, eigen_beta, eigen_gamma = R_to_euler_zyz(AXES)

# Printout.
print("Torsion angle: %s" % CONE_SIGMA_MAX)
print("Rotation axis: %s" % AXIS)
print("Full axis system:\n%s" % AXES)
print("cross(x, y) = z:\n    %s = %s" % (cross(AXES[:, 0], AXES[:, 1]), AXES[:, 2]))
print("cross(x, z) = -y:\n    %s = %s" % (cross(AXES[:, 0], AXES[:, 2]), -AXES[:, 1]))
print("cross(y, z) = x:\n    %s = %s" % (cross(AXES[:, 1], AXES[:, 2]), AXES[:, 0]))
print("Euler angles (alpha, beta, gamma): (%.15f, %.15f, %.15f)" % (eigen_alpha, eigen_beta, eigen_gamma))

# Load the optimised rotor state for creating the pseudo-ellipse data pipes.
state.load(state='frame_order_true', dir='..')

# Set up the dynamic system.
value.set(param='ave_pos_x', val=AVE_POS_X)
Пример #12
0
    def _calculate_rdc(self):
        """Calculate the averaged RDC for all states."""

        # Open the output files.
        if self.ROT_FILE:
            rot_file = open_write_file('rotations', dir=self.save_path, compress_type=1, force=True)

        # Printout.
        sys.stdout.write("\n\nRotating %s states for the RDC:\n\n" % locale.format("%d", self.N**self.MODES, grouping=True))

        # Turn off the relax interpreter echoing to allow the progress meter to be shown correctly.
        self.interpreter.off()

        # Set up some data structures for faster calculations.
        interatoms = []
        vectors = []
        d = []
        for interatom in interatomic_loop():
            # Nothing to do.
            if not hasattr(interatom, 'vector'):
                continue

            # Initialise the RDC structure (as a 1D numpy.float128 array for speed and minimising truncation artifacts).
            interatom.rdc = {}
            for tag in self._tensors:
                interatom.rdc[tag] = zeros(1, float128)

            # Pack the interatomic containers and vectors.
            interatoms.append(interatom)
            vectors.append(interatom.vector)

            # Get the spins.
            spin1 = return_spin(spin_id=interatom.spin_id1)
            spin2 = return_spin(spin_id=interatom.spin_id2)

            # Gyromagnetic ratios.
            g1 = periodic_table.gyromagnetic_ratio(spin1.isotope)
            g2 = periodic_table.gyromagnetic_ratio(spin2.isotope)

            # Calculate the RDC dipolar constant (in Hertz, and the 3 comes from the alignment tensor), and append it to the list.
            d.append(3.0/(2.0*pi) * dipolar_constant(g1, g2, interatom.r))

        # Repackage the data for speed.
        vectors = transpose(array(vectors, float64))
        d = array(d, float64)
        num_interatoms = len(vectors)

        # Store the alignment tensors.
        A = []
        for i in range(len(self._tensors)):
            A.append(cdp.align_tensors[i].A)

        # Loop over each position.
        for global_index, mode_indices in self._state_loop():
            # The progress meter.
            self._progress(global_index)

            # Total rotation matrix (for construction of the frame order matrix).
            total_R = eye(3)

            # Data initialisation.
            new_vect = vectors

            # Loop over each motional mode.
            for motion_index in range(self.MODES):
                # Generate the distribution specific rotation.
                self.rotation(mode_indices[motion_index], motion_index=motion_index)

                # Rotate the NH vector.
                new_vect = dot(self.R, new_vect)

                # Decompose the rotation into Euler angles and store them.
                if self.ROT_FILE:
                    a, b, g = R_to_euler_zyz(self.R)
                    rot_file.write('Mode %i:  %10.7f %10.7f %10.7f\n' % (motion_index, a, b, g))

                # Contribution to the total rotation.
                total_R = dot(self.R, total_R)

            # Loop over each alignment.
            for i in range(len(self._tensors)):
                # Calculate the RDC as quickly as possible.
                rdcs = d * tensordot(transpose(new_vect), tensordot(A[i], new_vect, axes=1), axes=1)

                # Store the values.
                for j in range(len(interatoms)):
                    interatoms[j].rdc[self._tensors[i]][0] += rdcs[j, j]

            # The frame order matrix component.
            self.daeg += kron_prod(total_R, total_R)

        # Print out.
        sys.stdout.write('\n\n')

        # Frame order matrix averaging.
        self.daeg = self.daeg / self.N**self.MODES

        # Write out the frame order matrix.
        file = open(self.save_path+sep+'frame_order_matrix', 'w')
        print_frame_order_2nd_degree(self.daeg, file=file, places=8)

        # Reactive the interpreter echoing.
        self.interpreter.on()

        # Average the RDC and write the data.
        for tag in self._tensors:
            # Average.
            for interatom in interatomic_loop():
                interatom.rdc[tag] = interatom.rdc[tag][0] / self.N**self.MODES

            # Save.
            self.interpreter.rdc.write(align_id=tag, file='rdc_%s.txt'%tag, dir=self.save_path, force=True)
Пример #13
0
# Python module imports.
from numpy import array, float64, transpose, zeros

# relax module imports.
from lib.geometry.rotations import euler_to_R_zyz, R_to_euler_zyz

# Create a data pipe for the data.
pipe.create('displace', 'N-state')

# Load the structure.
structure.read_pdb('fancy_mol.pdb')

# First rotate.
R = zeros((3, 3), float64)
euler_to_R_zyz(1, 2, 3, R)
origin = array([1, 1, 1], float64)
structure.rotate(R=R, origin=origin)

# Then translate.
T = array([1, 2, 3], float64)
structure.translate(T=T)

# Write out the new structure.
structure.write_pdb('displaced.pdb', force=True)

# Printout of the inverted Euler angles of rotation (the solution).
a, b, g = R_to_euler_zyz(transpose(R))
print("alpha: %s" % a)
print("beta:  %s" % b)
print("gamma: %s" % g)