def test_add_new_walls(self): wall_list = induction.get_all_walls(env) agent_position = env.unwrapped.observer.get_observation()["position"] helper.silentremove(BASE_DIR, "background_test2.lp") backgroundfile = os.path.join(BASE_DIR, "background_test2.lp") is_new_wall = abduction.add_new_walls(agent_position, wall_list, backgroundfile) self.assertTrue(is_new_wall) is_new_wall2 = abduction.add_new_walls(agent_position, wall_list, backgroundfile) self.assertFalse(is_new_wall2)
def test_send_state_transition_pos(self): previous_state = [1, 1] next_state = [2, 1] action = "right" wall_list = induction.get_all_walls(env) lasfile = os.path.join(BASE_DIR, "las_test2.las") helper.silentremove(BASE_DIR, "las_test2.las") background = os.path.join(BASE_DIR, "background_test4.lp") helper.silentremove(BASE_DIR, "background_test4.lp") induction.send_state_transition_pos(previous_state, next_state, action, wall_list, lasfile, background) size_las = os.stat(lasfile).st_size size_background = os.stat(background).st_size self.assertGreater(size_las, 0) self.assertEqual(size_background, 0)
def test_add_surrounding_walls(self): walls = induction.get_all_walls(env) surrounding = induction.add_surrounding_walls(1, 1, walls) self.assertEqual(surrounding, "wall((1, 2)). wall((0, 1)). wall((1, 0)). ")
def test_get_all_walls(self): walls = induction.get_all_walls(env) self.assertEqual(len(walls), 12)
def q_learning(env, num_episodes, discount_factor=1, alpha=0.5, epsilon=0.1, epsilon_decay=1.0): """ Args: alpha: TD learning rate """ height = env.unwrapped.game.height width = env.unwrapped.game.width wall_list = induction.get_all_walls(env) stats = plotting.EpisodeStats( episode_lengths=np.zeros(num_episodes), episode_rewards=np.zeros(num_episodes)) # 4 actions + 2 for X and Y + 4 surroundings weights = np.random.rand(10) for i_episode in range(num_episodes): print("------------------------------") # The policy we're following # policy = make_epsilon_greedy_policy( # epsilon * epsilon_decay**i_episode, env.action_space.n) # Print out which episode we're on, useful for debugging. # Also print reward for last episode last_reward = stats.episode_rewards[i_episode - 1] sys.stdout.flush() # Reset the env and pick the first action previous_state = env.reset() action_probs = np.ones(4, dtype=float) for t in range(TIME_RANGE): env.render() # time.sleep(0.1) # Take a step # action_probs = policy(state_int, i_episode) up_wall, down_wall, right_wall, left_wall = helper.check_surrounding_walls(int(previous_state[0]), int(previous_state[1]), wall_list) normalised_x = int(previous_state[0])/int(width) normalised_y = int(previous_state[1])/int(height) for i in range(0,4): action_probs[i] = weights[i] + normalised_x*weights[4] + normalised_y*weights[5] + \ int(up_wall)*weights[6] + int(down_wall)*weights[7] + int(right_wall)*weights[8] + int(left_wall)*weights[9] # action_probs[i] = weights[i] + int(previous_state[0])*weights[4] + int(previous_state[1])*weights[5] + \ # int(up_wall)*weights[6] + int(down_wall)*weights[7] + int(right_wall)*weights[8] + int(left_wall)*weights[9] action = np.argmax(action_probs) print("action ", action) # action = np.random.choice(np.arange(len(action_probs)), p=action_probs) # action = env.action_space.sample() # 0: UP # 1: DOWN # 2: LEFT # 3: RIGHT next_state, reward, done, _ = env.step(action) if done: reward = 100 else: reward = reward - 1 # Update stats stats.episode_rewards[i_episode] += reward stats.episode_lengths[i_episode] = t # TD Update alpha = 0.01 v_now = weights[action] + normalised_x*weights[4] + normalised_y*weights[5] + \ int(up_wall)*weights[6] + int(down_wall)*weights[7] + int(right_wall)*weights[8] + int(left_wall)*weights[9] normalised_next_x = int(next_state[0])/int(width) normalised_next_y = int(next_state[1])/int(height) up_wall_next, down_wall_next, right_wall_next, left_wall_next = helper.check_surrounding_walls(int(next_state[0]), int(next_state[1]), wall_list) v_next = weights[action] + normalised_next_x*weights[4] + normalised_next_y*weights[5] + \ int(up_wall_next)*weights[6] + int(down_wall_next)*weights[7] + int(right_wall_next)*weights[8] + int(left_wall_next)*weights[9] # v_next = weights[action] + int(next_state[0])*weights[4] + int(next_state[1])*weights[5] + \ # int(up_wall_next)*weights[6] + int(down_wall_next)*weights[7] + int(right_wall_next)*weights[8] + int(left_wall_next)*weights[9] weights_delta = alpha*(reward + discount_factor*v_next - v_now)*weights print("weights_delta", weights_delta) weights = weights - weights_delta # weights = weights + weights_delta print("weights", weights) if math.isnan(weights[0]): import ipdb; ipdb.set_trace() previous_state = next_state if done: break # run_experiment(env,state_int, Q, stats_test, i_episode, width, TIME_RANGE) return Q, stats
def k_learning(env, num_episodes, h, goal, epsilon=0.1, record_prefix=None, is_link=False): # Get cell range for the game height = env.unwrapped.game.height width = env.unwrapped.game.width cell_range = "\ncell((0..{}, 0..{})).\n".format(width - 1, height - 1) # Log everything and keep the record here log_dir = None if record_prefix: log_dir = os.path.join(cf.BASE_DIR, "log") log_dir = helper.gen_log_dir(log_dir, record_prefix) # the first abduction needs lots of basic information first_abduction = False keep_link = None # Clean up all the files first helper.silentremove(cf.BASE_DIR, cf.GROUNDING) helper.silentremove(cf.BASE_DIR, cf.LASFILE) helper.silentremove(cf.BASE_DIR, cf.CLINGOFILE) helper.silentremove(cf.BASE_DIR, cf.LAS_CACHE, cf.LAS_CACHE_PATH) helper.create_file(cf.BASE_DIR, cf.LAS_CACHE, cf.LAS_CACHE_PATH) cf.ALREADY_LINK = False # Copy pos examples that used in TL before tl_file = os.path.join(cf.BASE_DIR, "tl_pos.las") helper.copy_file(tl_file, cf.LASFILE) # Add mode bias and adjacent definition for ILASP induction.copy_las_base(height, width, cf.LASFILE, is_link) # record the current hypothesis hypothesis = h abduction.make_lp_base(cell_range) wall_list = induction.get_all_walls(env) stats = plotting.EpisodeStats(episode_lengths=np.zeros(num_episodes), episode_rewards=np.zeros(num_episodes), episode_runtime=np.zeros(num_episodes)) stats_ilasp = plotting.TimeStats(ILASP_runtime=np.zeros((num_episodes, cf.TIME_RANGE))) stats_test = plotting.EpisodeStats(episode_lengths=np.zeros(num_episodes), episode_rewards=np.zeros(num_episodes), episode_runtime=np.zeros(num_episodes)) for i_episode in range(num_episodes): print("==============NEW EPISODE======================") print("i_episode ", i_episode) start_total_runtime = time.time() previous_state = env.reset() agent_position = env.unwrapped.observer.get_observation()["position"] env.render() previous_state_at = py_asp.state_at(previous_state[0], previous_state[1], 0) t = 0 # Once the agent reaches the goal, the algorithm kicks in # Decaying epsilon greedy params # new_epsilon = epsilon*(1/(i_episode+1)**cf.DECAY_PARAM) new_epsilon = epsilon print("new_epsilon ", new_epsilon) while t < cf.TIME_RANGE: if first_abduction == False: # Convert syntax of H for ASP solver hypothesis_asp = py_asp.convert_las_asp(hypothesis) abduction.add_hypothesis(hypothesis_asp) abduction.add_start_state(agent_position) abduction.add_goal_state(goal) first_abduction = True # Update the starting position for Clingo agent_position = env.unwrapped.observer.get_observation( )["position"] abduction.update_agent_position(agent_position, t) abduction.update_time_range(agent_position, t) # Run clingo to get a plan answer_sets = abduction.run_clingo(cf.CLINGOFILE) states_plan, actions_array = abduction.sort_planning(answer_sets) # Record clingo if record_prefix: inputfile = os.path.join(cf.BASE_DIR, cf.CLINGOFILE) helper.log_asp(inputfile, answer_sets, log_dir, i_episode, t) # Execute the planning for action_index, action in enumerate(actions_array): print("---------Planning phase---------------------") # Flip a coin. If threshold < epsilon, explore randomly threshold = random.uniform(0, 1) if threshold < new_epsilon: action_int = randint(0, 3) if cf.IS_PRINT: print("Taking a pure random action...", helper.convert_action(action_int)) else: # Following the plan action_int = helper.get_action(action[1]) if cf.IS_PRINT: print("Following the plan...", helper.convert_action(action_int)) action_string = helper.convert_action(action_int) next_state, reward, done, _ = env.step(action_int) next_state_at = py_asp.state_at(next_state[0], next_state[1], t + 1) if done: reward = reward + 10 else: reward = reward - 1 # Meanwhile, accumulate all background knowlege abduction.add_new_walls(previous_state, wall_list, cf.CLINGOFILE) # Make ASP syntax of state transition pos1, pos2, link = induction.generate_pos( hypothesis, previous_state, next_state, action_string, wall_list, cell_range) if link is not None: keep_link = link # Update H if necessary if (not induction.check_ILASP_cover( hypothesis, pos1, height, width, keep_link)) or (not induction.check_ILASP_cover( hypothesis, pos2, height, width, keep_link)): start_time = time.time() hypothesis = induction.run_ILASP(cf.LASFILE, cf.CACHE_DIR) ilasp_runtime = (time.time() - start_time) stats_ilasp.ILASP_runtime[i_episode, t] += ilasp_runtime # Convert syntax of H for ASP solver hypothesis_asp = py_asp.convert_las_asp(hypothesis) abduction.update_h(hypothesis_asp) if record_prefix: inputfile = os.path.join(cf.BASE_DIR, cf.LASFILE) helper.log_las(inputfile, hypothesis, log_dir, i_episode, t) previous_state = next_state previous_state_at = next_state_at # Update stats stats.episode_rewards[i_episode] += reward stats.episode_lengths[i_episode] = action_index env.render() # time.sleep(0.1) t = t + 1 if done or (threshold < new_epsilon): break if not actions_array: t = t + 1 if done: break stats.episode_runtime[i_episode] += (time.time() - start_total_runtime) run_experiment(env, i_episode, stats_test, width, cf.TIME_RANGE) return stats, stats_test, stats_ilasp