Пример #1
0
        def gru3(curr_s3, prev_s3):
            curr_s3 = tensor.reshape(curr_s3, s_shape3)
            curr_s3_ = InputLayer(s_shape3, curr_s3)
            prev_s3_ = InputLayer(s_shape3, prev_s3)

            t_x_s_update3_ = CConv3DLayer(prev_s3_, curr_s3_, (n_deconvfilter[2], n_deconvfilter[2], 3, 3, 3),
                                          params=t_x_s_update3.params)
            t_x_s_reset3_ = CConv3DLayer(prev_s3_, curr_s3_, (n_deconvfilter[2], n_deconvfilter[2], 3, 3, 3),
                                         params=t_x_s_reset3.params)

            update3_ = SigmoidLayer(t_x_s_update3_)
            comp_udpate_gate3_ = ComplementLayer(update3_)
            reset_gate3_ = SigmoidLayer(t_x_s_reset3_)

            rs3_ = EltwiseMultiplyLayer(reset_gate3_, prev_s3_)
            t_x_rs3_ = CConv3DLayer(rs3_, curr_s3_, (n_deconvfilter[2], n_deconvfilter[2], 3, 3, 3),
                                    params=t_x_rs3.params)
            tanh_t_x_rs3_ = TanhLayer(t_x_rs3_)

            gru_out3_ = AddLayer(
                EltwiseMultiplyLayer(update3_, prev_s3_),
                EltwiseMultiplyLayer(comp_udpate_gate3_, tanh_t_x_rs3_))

            print("gru_out3: ", gru_out3_.output_shape)

            return gru_out3_.output
Пример #2
0
        def gru2(curr_s2, prev_s2):
            curr_s2 = tensor.reshape(curr_s2, s_shape2)
            curr_s2_ = InputLayer(s_shape2, curr_s2)
            prev_s2_ = InputLayer(s_shape2, prev_s2)

            t_x_s_update2_ = CConv3DLayer(prev_s2_, curr_s2_, (n_deconvfilter[1], n_deconvfilter[1], 3, 3, 3),
                                          params=t_x_s_update2.params)
            t_x_s_reset2_ = CConv3DLayer(prev_s2_, curr_s2_, (n_deconvfilter[1], n_deconvfilter[1], 3, 3, 3),
                                         params=t_x_s_reset2.params)

            update2_ = SigmoidLayer(t_x_s_update2_)
            comp_udpate_gate2_ = ComplementLayer(update2_)
            reset_gate2_ = SigmoidLayer(t_x_s_reset2_)

            rs2_ = EltwiseMultiplyLayer(reset_gate2_, prev_s2_)
            t_x_rs2_ = CConv3DLayer(rs2_, curr_s2_, (n_deconvfilter[1], n_deconvfilter[1], 3, 3, 3),
                                    params=t_x_rs2.params)
            tanh_t_x_rs2_ = TanhLayer(t_x_rs2_)

            gru_out2_ = AddLayer(
                EltwiseMultiplyLayer(update2_, prev_s2_),
                EltwiseMultiplyLayer(comp_udpate_gate2_, tanh_t_x_rs2_))

            print("gru_out2: ", gru_out2_.output_shape)
            return gru_out2_.output
Пример #3
0
        def gru4(curr_s4, prev_s4):
            curr_s4 = tensor.reshape(curr_s4, s_shape4)
            curr_s4_ = InputLayer(s_shape4, curr_s4)
            prev_s4_ = InputLayer(s_shape4, prev_s4)

            t_x_s_update4_ = CConv3DLayer(prev_s4_, curr_s4_, (n_deconvfilter[3], n_deconvfilter[3], 3, 3, 3),
                                          params=t_x_s_update4.params)
            t_x_s_reset4_ = CConv3DLayer(prev_s4_, curr_s4_, (n_deconvfilter[3], n_deconvfilter[3], 3, 3, 3),
                                         params=t_x_s_reset4.params)

            update4_ = SigmoidLayer(t_x_s_update4_)
            comp_udpate_gate4_ = ComplementLayer(update4_)
            reset_gate4_ = SigmoidLayer(t_x_s_reset4_)

            rs4_ = EltwiseMultiplyLayer(reset_gate4_, prev_s4_)
            t_x_rs4_ = CConv3DLayer(rs4_, curr_s4_, (n_deconvfilter[3], n_deconvfilter[3], 3, 3, 3),
                                    params=t_x_rs4.params)
            tanh_t_x_rs4_ = TanhLayer(t_x_rs4_)

            gru_out4_ = AddLayer(
                EltwiseMultiplyLayer(update4_, prev_s4_),
                EltwiseMultiplyLayer(comp_udpate_gate4_, tanh_t_x_rs4_))

            print("gru_out4: ", gru_out4_.output_shape)

            return gru_out4_.output
Пример #4
0
        def gru5(curr_s5, prev_s5):
            curr_s5 = tensor.reshape(curr_s5, s_shape5)
            curr_s5_ = InputLayer(s_shape5, curr_s5)

            prev_s5_ = InputLayer(s_shape5, prev_s5)

            print("curr_s5: ", curr_s5_.output_shape)
            print("prev_s5: ", prev_s5_.output_shape)
            t_x_s_update5_ = CConv3DLayer(prev_s5_, curr_s5_, (n_deconvfilter[4], n_deconvfilter[4], 3, 3, 3),
                                          params=t_x_s_update5.params)
            t_x_s_reset5_ = CConv3DLayer(prev_s5_, curr_s5_, (n_deconvfilter[4], n_deconvfilter[4], 3, 3, 3),
                                         params=t_x_s_reset5.params)

            update5_ = SigmoidLayer(t_x_s_update5_)
            comp_udpate_gate5_ = ComplementLayer(update5_)
            reset_gate5_ = SigmoidLayer(t_x_s_reset5_)

            rs5_ = EltwiseMultiplyLayer(reset_gate5_, prev_s5_)
            t_x_rs5_ = CConv3DLayer(rs5_, curr_s5_, (n_deconvfilter[4], n_deconvfilter[4], 3, 3, 3),
                                    params=t_x_rs5.params)
            tanh_t_x_rs5_ = TanhLayer(t_x_rs5_)

            print("t_x_s_update5: ", t_x_s_update5_.output_shape)
            print("t_x_s_reset5: ", t_x_s_reset5_.output_shape)

            gru_out5_ = AddLayer(
                EltwiseMultiplyLayer(update5_, prev_s5_),
                EltwiseMultiplyLayer(comp_udpate_gate5_, tanh_t_x_rs5_))

            print("gru_out5: ", gru_out5_.output_shape)
            return gru_out5_.output
        def recurrence(x_curr, prev_s_tensor, prev_in_gate_tensor):
            # Scan function cannot use compiled function.
            input_ = InputLayer(input_shape, x_curr)
            conv1_ = ConvLayer(input_, (n_convfilter[0], 7, 7),
                               params=conv1.params)
            pool1_ = PoolLayer(conv1_)
            rect1_ = LeakyReLU(pool1_)
            conv2_ = ConvLayer(rect1_, (n_convfilter[1], 3, 3),
                               params=conv2.params)
            pool2_ = PoolLayer(conv2_)
            rect2_ = LeakyReLU(pool2_)
            conv3_ = ConvLayer(rect2_, (n_convfilter[2], 3, 3),
                               params=conv3.params)
            pool3_ = PoolLayer(conv3_)
            rect3_ = LeakyReLU(pool3_)
            conv4_ = ConvLayer(rect3_, (n_convfilter[3], 3, 3),
                               params=conv4.params)
            pool4_ = PoolLayer(conv4_)
            rect4_ = LeakyReLU(pool4_)
            conv5_ = ConvLayer(rect4_, (n_convfilter[4], 3, 3),
                               params=conv5.params)
            pool5_ = PoolLayer(conv5_)
            rect5_ = LeakyReLU(pool5_)
            conv6_ = ConvLayer(rect5_, (n_convfilter[5], 3, 3),
                               params=conv6.params)
            pool6_ = PoolLayer(conv6_)
            rect6_ = LeakyReLU(pool6_)
            flat6_ = FlattenLayer(rect6_)
            fc7_ = TensorProductLayer(flat6_,
                                      n_fc_filters[0],
                                      params=fc7.params)
            rect7_ = LeakyReLU(fc7_)

            prev_s_ = InputLayer(s_shape, prev_s_tensor)

            t_x_s_update_ = FCConv3DLayer(
                prev_s_,
                rect7_, (n_deconvfilter[0], n_deconvfilter[0], 3, 3, 3),
                params=t_x_s_update.params)
            t_x_s_reset_ = FCConv3DLayer(
                prev_s_,
                rect7_, (n_deconvfilter[0], n_deconvfilter[0], 3, 3, 3),
                params=t_x_s_reset.params)

            update_gate_ = SigmoidLayer(t_x_s_update_)
            comp_update_gate_ = ComplementLayer(update_gate_)
            reset_gate_ = SigmoidLayer(t_x_s_reset_)

            rs_ = EltwiseMultiplyLayer(reset_gate_, prev_s_)
            t_x_rs_ = FCConv3DLayer(
                rs_,
                rect7_, (n_deconvfilter[0], n_deconvfilter[0], 3, 3, 3),
                params=t_x_rs.params)
            tanh_t_x_rs_ = TanhLayer(t_x_rs_)

            gru_out_ = AddLayer(
                EltwiseMultiplyLayer(update_gate_, prev_s_),
                EltwiseMultiplyLayer(comp_update_gate_, tanh_t_x_rs_))

            return gru_out_.output, update_gate_.output
Пример #6
0
        def decode_recurrence_2(x_curr, prev_s_tensor, prev_in_gate_tensor):
            x_curr_ = InputLayer(fc_shape, x_curr)
            prev_s_2_ = InputLayer(s_shape_2, prev_s_tensor)
            t_x_s_update_2_ = FCConv3DLayer(
                prev_s_2_,
                x_curr_, (n_deconvfilter[3], n_deconvfilter[3], 3, 3, 3),
                params=t_x_s_update_2.params)

            t_x_s_reset_2_ = FCConv3DLayer(
                prev_s_2_,
                x_curr_, (n_deconvfilter[3], n_deconvfilter[3], 3, 3, 3),
                params=t_x_s_reset_2.params)

            update_gate_ = SigmoidLayer(t_x_s_update_2_)
            comp_update_gate_ = ComplementLayer(update_gate_)
            reset_gate_ = SigmoidLayer(t_x_s_reset_2_)

            rs_ = EltwiseMultiplyLayer(reset_gate_, prev_s_2_)
            t_x_rs_2_ = FCConv3DLayer(
                rs_,
                x_curr_, (n_deconvfilter[3], n_deconvfilter[3], 3, 3, 3),
                params=t_x_rs_2.params)
            tanh_t_x_rs_ = TanhLayer(t_x_rs_2_)

            gru_out_2_ = AddLayer(
                EltwiseMultiplyLayer(update_gate_, prev_s_2_),
                EltwiseMultiplyLayer(comp_update_gate_, tanh_t_x_rs_))

            return gru_out_2_.output, update_gate_.output
Пример #7
0
        def recurrence(x_curr, prev_s_tensor, prev_in_gate_tensor):

            # Input layer
            input_ = InputLayer(input_shape, x_curr)

            # GRU network same parameters as encoder
            # Conv -> leakyReLU -> Conv -> LeakyReLU -> MaxPooling
            conv1a_ = ConvLayer(input_, (gru_filters[0], 7, 7), params=conv1a.params) # 96 x 7 x 7
            rect1a_ = LeakyReLU(conv1a_)
            conv1b_ = ConvLayer(rect1a_, (gru_filters[0], 3, 3), params=conv1b.params) # 96 x 3 x 3
            rect1_ = LeakyReLU(conv1b_)
            pool1_ = PoolLayer(rect1_)


            # Residual                               |=> -----------------=V
            # Conv -> leakyReLU -> Conv -> LeakyReLU -> Conv -> LeakyReLU -> MaxPooling
            conv2a_ = ConvLayer(pool1_, (gru_filters[1], 3, 3), params=conv2a.params) # 128 x 3 x 3
            rect2a_ = LeakyReLU(conv2a_)
            conv2b_ = ConvLayer(rect2a_, (gru_filters[1], 3, 3), params=conv2b.params) # 128 x 3 x 3
            rect2_ = LeakyReLU(conv2b_)
            conv2c_ = ConvLayer(pool1_, (gru_filters[1], 1, 1), params=conv2c.params) # 128 x 1 x 1
            res2_ = AddLayer(conv2c_, rect2_)
            pool2_ = PoolLayer(res2_)

            # Residual                               |=> -----------------=V
            # Conv -> leakyReLU -> Conv -> LeakyReLU -> Conv -> LeakyReLU -> MaxPooling
            conv3a_ = ConvLayer(pool2_, (gru_filters[2], 3, 3), params=conv3a.params) # 256 x 3 x 3
            rect3a_ = LeakyReLU(conv3a_)
            conv3b_ = ConvLayer(rect3a_, (gru_filters[2], 3, 3), params=conv3b.params) # 256 x 3 x 3
            rect3_ = LeakyReLU(conv3b_)
            conv3c_ = ConvLayer(pool2_, (gru_filters[2], 1, 1), params=conv3c.params) # 256 x 1 x 1
            res3_ = AddLayer(conv3c_, rect3_)
            pool3_ = PoolLayer(res3_)

            # Conv -> leakyReLU -> Conv -> LeakyReLU -> MaxPooling
            conv4a_ = ConvLayer(pool3_, (gru_filters[3], 3, 3), params=conv4a.params)  # 256 x 3 x 3
            rect4a_ = LeakyReLU(conv4a_)
            conv4b_ = ConvLayer(rect4a_, (gru_filters[3], 3, 3), params=conv4b.params)  # 256 x 3 x 3
            rect4_ = LeakyReLU(conv4b_)
            pool4_ = PoolLayer(rect4_)

            # Residual                               |=> -----------------=V
            # Conv -> leakyReLU -> Conv -> LeakyReLU -> Conv -> LeakyReLU -> MaxPooling
            conv5a_ = ConvLayer(pool4_, (gru_filters[4], 3, 3), params=conv5a.params)  # 256 x 3 x 3
            rect5a_ = LeakyReLU(conv5a_)
            conv5b_ = ConvLayer(rect5a_, (gru_filters[4], 3, 3), params=conv5b.params)  # 256 x 3 x 3
            rect5_ = LeakyReLU(conv5b_)
            conv5c_ = ConvLayer(pool4_, (gru_filters[4], 1, 1), params=conv5c.params)  # 256 x 1 x 1
            res5_ = AddLayer(conv5c_, rect5_)
            pool5_ = PoolLayer(res5_)

            # Residual                               |=> -----------------=V
            # Conv -> leakyReLU -> Conv -> LeakyReLU -> Conv -> LeakyReLU -> MaxPooling
            conv6a_ = ConvLayer(pool5_, (gru_filters[5], 3, 3), params=conv6a.params) # 256 x 3 x 3
            rect6a_ = LeakyReLU(conv6a_)
            conv6b_ = ConvLayer(rect6a_, (gru_filters[5], 3, 3), params=conv6b.params) # 256 x 3 x 3
            rect6_ = LeakyReLU(conv6b_)
            res6_ = AddLayer(pool5_, rect6_)
            pool6_ = PoolLayer(res6_)

            # Flatten Layer
            flat6_ = FlattenLayer(pool6_)

            # Fully connected layer
            fc7_ = TensorProductLayer(flat6_, fully_connecter_filter[0], params=fc7.params)
            rect7_ = LeakyReLU(fc7_)

            # h(t-1)
            prev_s_ = InputLayer(s_shape, prev_s_tensor)

            # FC layer convoluted with hidden states
            update_layer_ = FCConv3DLayer(
                prev_s_,
                rect7_, (gru_filters[1], gru_filters[1], 3, 3, 3), # 128 x 3 x 3 x 3
                params=update_layer.params)

            # FC layer convoluted with hidden states
            reset_layer_ = FCConv3DLayer(
                prev_s_,
                rect7_, (gru_filters[1], gru_filters[1], 3, 3, 3), # 128 x 3 x 3 x 3
                params=reset_layer.params)

            # Sigmoid( Wfx T(xt) (+) Uf * h(t-1) + bf )
            update_gate_ = SigmoidLayer(update_layer_)

            # 1 - u(t)
            compliment_update_gate_ = ComplementLayer(update_gate_)

            # Sigmoid (Wix T(xt) (+) Ui * h(t-1) + bi)
            reset_gate_ = SigmoidLayer(reset_layer_)

            # rt (.) h(t-1)
            rs_ = EltwiseMultiplyLayer(reset_gate_, prev_s_)

            # Uh * rt (.) h(t-1) + bh
            hidden_layer_ = FCConv3DLayer(
                rs_, rect7_, (gru_filters[1], gru_filters[1], 3, 3, 3), params=hidden_state_layer.params) # 128 x 3 x 3 x 3

            tanh_layer = TanhLayer(hidden_layer_)

            # ht = (1 - ut) (.) h(t-1) (+) tanh(  Uh * rt (.) h(t-1) + bh )
            gru_out_ = AddLayer(
                EltwiseMultiplyLayer(update_gate_, prev_s_),
                EltwiseMultiplyLayer(compliment_update_gate_, tanh_layer))

            return gru_out_.output, update_gate_.output
Пример #8
0
        def recurrence(x_curr, prev_s_tensor, prev_in_gate_tensor):  # n_deconvfilter = [128, 128, 128, 64, 32, 2]
            # Scan function cannot use compiled function.
            input_ = InputLayer(input_shape, x_curr)
            conv1a_ = ConvLayer(input_, (n_convfilter[0], 7, 7), params=conv1a.params)
            rect1a_ = LeakyReLU(conv1a_)
            conv1b_ = ConvLayer(rect1a_, (n_convfilter[0], 3, 3), params=conv1b.params)
            rect1_ = LeakyReLU(conv1b_)
            pool1_ = PoolLayer(rect1_)

            conv2a_ = ConvLayer(pool1_, (n_convfilter[1], 3, 3), params=conv2a.params)
            rect2a_ = LeakyReLU(conv2a_)
            conv2b_ = ConvLayer(rect2a_, (n_convfilter[1], 3, 3), params=conv2b.params)
            rect2_ = LeakyReLU(conv2b_)
            conv2c_ = ConvLayer(pool1_, (n_convfilter[1], 1, 1), params=conv2c.params)
            res2_ = AddLayer(conv2c_, rect2_)
            pool2_ = PoolLayer(res2_)

            conv3a_ = ConvLayer(pool2_, (n_convfilter[2], 3, 3), params=conv3a.params)
            rect3a_ = LeakyReLU(conv3a_)
            conv3b_ = ConvLayer(rect3a_, (n_convfilter[2], 3, 3), params=conv3b.params)
            rect3_ = LeakyReLU(conv3b_)
            conv3c_ = ConvLayer(pool2_, (n_convfilter[2], 1, 1), params=conv3c.params)
            res3_ = AddLayer(conv3c_, rect3_)
            pool3_ = PoolLayer(res3_)

            conv4a_ = ConvLayer(pool3_, (n_convfilter[3], 3, 3), params=conv4a.params)
            rect4a_ = LeakyReLU(conv4a_)
            conv4b_ = ConvLayer(rect4a_, (n_convfilter[3], 3, 3), params=conv4b.params)
            rect4_ = LeakyReLU(conv4b_)
            pool4_ = PoolLayer(rect4_)

            conv5a_ = ConvLayer(pool4_, (n_convfilter[4], 3, 3), params=conv5a.params)
            rect5a_ = LeakyReLU(conv5a_)
            conv5b_ = ConvLayer(rect5a_, (n_convfilter[4], 3, 3), params=conv5b.params)
            rect5_ = LeakyReLU(conv5b_)
            conv5c_ = ConvLayer(pool4_, (n_convfilter[4], 1, 1), params=conv5c.params)
            res5_ = AddLayer(conv5c_, rect5_)
            pool5_ = PoolLayer(res5_)

            conv6a_ = ConvLayer(pool5_, (n_convfilter[5], 3, 3), params=conv6a.params)
            rect6a_ = LeakyReLU(conv6a_)
            conv6b_ = ConvLayer(rect6a_, (n_convfilter[5], 3, 3), params=conv6b.params)
            rect6_ = LeakyReLU(conv6b_)
            res6_ = AddLayer(pool5_, rect6_)
            pool6_ = PoolLayer(res6_)

            flat6_ = FlattenLayer(pool6_)
            fc7_ = TensorProductLayer(flat6_, n_fc_filters[0], params=fc7.params)
            rect7_ = LeakyReLU(fc7_)

            prev_s_ = InputLayer(s_shape, prev_s_tensor)

            t_x_s_update_ = FCConv3DLayer(
                prev_s_,
                rect7_, (n_deconvfilter[0], n_deconvfilter[0], 3, 3, 3),
                params=t_x_s_update.params)

            t_x_s_reset_ = FCConv3DLayer(
                prev_s_,
                rect7_, (n_deconvfilter[0], n_deconvfilter[0], 3, 3, 3),
                params=t_x_s_reset.params)

            update_gate_ = SigmoidLayer(t_x_s_update_)
            comp_update_gate_ = ComplementLayer(update_gate_)
            reset_gate_ = SigmoidLayer(t_x_s_reset_)

            rs_ = EltwiseMultiplyLayer(reset_gate_, prev_s_)
            t_x_rs_ = FCConv3DLayer(
                rs_, rect7_, (n_deconvfilter[0], n_deconvfilter[0], 3, 3, 3), params=t_x_rs.params)
            tanh_t_x_rs_ = TanhLayer(t_x_rs_)

            gru_out_ = AddLayer(
                EltwiseMultiplyLayer(update_gate_, prev_s_),
                EltwiseMultiplyLayer(comp_update_gate_, tanh_t_x_rs_))  # (B, 128, 4, 4, 4)

            return gru_out_.output, update_gate_.output