Пример #1
0
 def set_sessionid_by_token(self, token_str):
     token_str = tornado.escape.native_str(token_str)
     val = Mem.get(token_str)
     if val is not None and val != 'token':
         self._session_id = val
         self._request.set_secure_cookie("SESSIONID", self._session_id, self._expires_days)
         Mem.delete(token_str)
Пример #2
0
 def get(self, key):
     val = Mem.get(self._session_id)
     if val is not None:
         Mem.set(self._session_id, val, self._time_out)
         if val.has_key(key):
             return val[key]
     return None
Пример #3
0
 def set(self, key, value):
     ret = False
     val = Mem.get(self._session_id)
     if val is None or isinstance(val, dict) == False:
         val = dict()
     val[key] = value
     ret = Mem.set(self._session_id, val, self._time_out)
     return ret
Пример #4
0
    def generate_token(self):

        token_str = self._session.generate_uuid()

        if Mem.set(token_str, 'token',
                   config.setting['session']['token_time_out']) == False:

            return None

        else:

            return token_str
Пример #5
0
def nt_gen_replay_top_test(dut):
    """Test bench main function."""
    # start the clock
    cocotb.fork(clk_gen(dut.clk, CLK_FREQ_MHZ))

    # no software reset
    dut.rst_sw <= 0

    # reset dut
    yield rstn(dut.clk, dut.rstn)

    # open trace file
    trace = File("files/random.file")

    # get trace file size
    trace_size = trace.size()

    # trace file must be a multiple of the AXI data width
    if trace.size() % (AXI_MEM_BIT_WIDTH / 8) != 0:
        raise cocotb.result.TestFailure("invalid trace size")

    # calculate ring buffer sizes
    ring_buff_sizes = []
    for ring_buff_size in RING_BUFF_SIZES:
        # size of ring buffer is determined by multiplying the size factor by
        # the size of the trace
        ring_buff_size = int(ring_buff_size * trace_size)

        # make sure that the ring buffer size is multiple of AXI data width
        if ring_buff_size % (AXI_MEM_BIT_WIDTH / 8) != 0:
            ring_buff_size += AXI_MEM_BIT_WIDTH/8 - \
                    ring_buff_size % (AXI_MEM_BIT_WIDTH/8)
        ring_buff_sizes.append(ring_buff_size)

    # create a ring buffer memory (initially of size 0) and connect it to the
    # DUT
    ring_buff = Mem(0)
    ring_buff.connect(dut, "ddr3")

    # create axi lite writer, connect and reset
    axi_lite_writer = AXI_Lite_Writer()
    axi_lite_writer.connect(dut, dut.clk, AXI_LITE_BIT_WIDTH, "ctrl")
    yield axi_lite_writer.rst()

    # create axi lite reader, connect and reset
    axi_lite_reader = AXI_Lite_Reader()
    axi_lite_reader.connect(dut, dut.clk, AXI_LITE_BIT_WIDTH, "ctrl")
    yield axi_lite_reader.rst()

    # create axi stream reader, connect and reset
    axis_reader = AXIS_Reader()
    axis_reader.connect(dut, dut.clk, AXIS_BIT_WIDTH)
    yield axis_reader.rst()

    # start the ring buffer memory main routine
    cocotb.fork(ring_buff.main())

    # toggle m_axis_tready
    cocotb.fork(toggle_signal(dut.clk, dut.m_axis_tready))

    # iterate over all ring buffer sizes
    for i, ring_buff_size in enumerate(ring_buff_sizes):

        # set ring buffer size
        ring_buff.set_size(ring_buff_size)

        # iterate over all addresses where ring buffer shall be located in
        # memory
        for j, ring_buff_addr in enumerate(RING_BUFF_ADDRS):

            # print status
            print("Test %d/%d" % (i * len(RING_BUFF_ADDRS) + j + 1,
                                  len(RING_BUFF_ADDRS) * len(RING_BUFF_SIZES)))

            print("Ring Buff Addr: 0x%x, Size: %d" %
                  (ring_buff_addr, ring_buff_size))

            # we have a total of 8 GByte of memory. Make sure the ring buffer
            # fits at the desired address
            if ring_buff_addr + ring_buff_size > 0x1FFFFFFFF:
                raise cocotb.result.TestFailure("ring buffer is too large")

            # to reduce the simulation memory footprint, provide the memory
            # module the first memory address that we acutally care about
            ring_buff.set_offset(ring_buff_addr)

            # configure ring buffer memory location
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_MEM_ADDR_HI,
                                        ring_buff_addr >> 32)
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_MEM_ADDR_LO,
                                        ring_buff_addr & 0xFFFFFFFF)

            # configure ring buffer address range
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_MEM_RANGE,
                                        ring_buff_size - 1)

            # configure trace size
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_TRACE_SIZE_HI,
                                        trace_size >> 32)
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_TRACE_SIZE_LO,
                                        trace_size & 0xFFFFFFFF)

            # reset write address pointer
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_ADDR_WR, 0x0)

            # make sure module initially is inactive
            status = yield axi_lite_reader.read(CPUREG_OFFSET_STATUS)
            if status & 0x3 != 0:
                raise cocotb.reset.TestFailure("module is active")

            # start the module
            yield axi_lite_writer.write(CPUREG_OFFSET_CTRL_START, 0x1)

            # wait a few cycles
            yield wait_n_cycles(dut.clk, 10)

            # start writing the ring buffer
            cocotb.fork(
                ring_buff_write(dut, ring_buff, trace, ring_buff_addr,
                                axi_lite_reader, axi_lite_writer))

            # start coroutine that checks dut output
            coroutine_chk_out = cocotb.fork(
                check_output(dut, trace, axis_reader))

            # wait a few cycles and make sure module is active
            yield wait_n_cycles(dut.clk, 10)
            status = yield axi_lite_reader.read(CPUREG_OFFSET_STATUS)
            if status & 0x1 == 0x0:
                raise cocotb.result.TestFailure("mem read not active")
            if status & 0x2 == 0x0:
                raise cocotb.result.TestFailure("packet assembly not active")

            # wait for output check to complete
            yield coroutine_chk_out.join()

            # wait a few cycles
            yield wait_n_cycles(dut.clk, 10)

            # make sure module is now inactive
            status = yield axi_lite_reader.read(CPUREG_OFFSET_STATUS)
            if status & 0x3 != 0x0:
                raise cocotb.result.TestFailure("module does not become " +
                                                "inactive")

            # clear the ring buffer contents
            ring_buff.clear()

    # close the trace file
    trace.close()
Пример #6
0
 def destroy(self):
     Mem.delete(self._session_id)
def nt_recv_capture_top_test(dut):
    """Test bench main function."""
    # start the clock
    cocotb.fork(clk_gen(dut.clk, CLK_FREQ_MHZ))

    # no software reset
    dut.rst_sw <= 0

    # reset DuT
    yield rstn(dut.clk, dut.rstn)

    # create AXI4-Lite writer, connect and reset it
    axilite_writer = AXI_Lite_Writer()
    axilite_writer.connect(dut, dut.clk, AXI_CTRL_BIT_WIDTH, "ctrl")
    yield axilite_writer.rst()

    # create AXI4-Lite reader, connect and reset it
    axilite_reader = AXI_Lite_Reader()
    axilite_reader.connect(dut, dut.clk, AXI_CTRL_BIT_WIDTH, "ctrl")
    yield axilite_reader.rst()

    # create AXI4-Stream writer, connect and reset it
    axis_writer = AXIS_Writer()
    axis_writer.connect(dut, dut.clk, AXIS_BIT_WIDTH)
    yield axis_writer.rst()

    # create a ring buffer memory (initially of size 0) and connect it to the
    # DuT
    ring_buff = Mem(0)
    ring_buff.connect(dut, "ddr3")

    # generate a couple of random Ethernet packets. For each packet, generate
    # a 16 bit latency value and a 26 bit inter-packet time value
    pkts = []
    latencies = []
    inter_packet_times = []
    for _ in range(N_PACKETS):
        pkts.append(gen_packet())
        latencies.append(random.randint(0, 2**24 - 1))
        inter_packet_times.append(random.randint(0, 2**28 - 1))

    # start the ring buffer memory main routine
    cocotb.fork(ring_buff.main())

    # wait some more clock cycles
    yield wait_n_cycles(dut.clk, 5)

    # iterate over all ring buffer sizes
    for i, ring_buff_size in enumerate(RING_BUFF_SIZES):

        # set ring buffer size
        ring_buff.set_size(ring_buff_size)

        # iterate over all adderesses where ring buffer shall be located in
        # memory
        for j, ring_buff_addr in enumerate(RING_BUFF_ADDRS):

            # print status
            print("Test %d/%d (this will take a while)" %
                  (i * len(RING_BUFF_ADDRS) + j + 1,
                   len(RING_BUFF_ADDRS) * len(RING_BUFF_SIZES)))

            # we have a total of 8 GByte of memory. Make sure the ring buffer
            # fits at the desired address
            if ring_buff_addr + ring_buff_size > 0x1FFFFFFFF:
                raise cocotb.result.TestFailure("ring buffer is too large")

            # to reduce the simulation memory footprint, provide the memory
            # module the first memory address that we actually care about
            ring_buff.set_offset(ring_buff_addr)

            # write ring buffer memory location and address range
            yield axilite_writer.write(CPUREG_OFFSET_CTRL_MEM_ADDR_HI,
                                       ring_buff_addr >> 32)
            yield axilite_writer.write(CPUREG_OFFSET_CTRL_MEM_ADDR_LO,
                                       ring_buff_addr & 0xFFFFFFFF)
            yield axilite_writer.write(CPUREG_OFFSET_CTRL_MEM_RANGE,
                                       ring_buff_size - 1)

            # itererate over all capture lengths
            for max_len_capture in MAX_CAPTURE_LENS:
                # reset read address pointer
                yield axilite_writer.write(CPUREG_OFFSET_CTRL_ADDR_RD, 0x0)

                # set max capture length
                yield axilite_writer.write(CPUREG_OFFSET_CTRL_MAX_LEN_CAPTURE,
                                           max_len_capture)

                # start couroutine that applies packets at input
                cocotb.fork(
                    packets_write(dut, axis_writer, axilite_writer,
                                  axilite_reader, pkts, latencies,
                                  inter_packet_times))

                # wait a bit
                yield wait_n_cycles(dut.clk, 50)

                # start the ring buffer read coroutine and wait until it
                # completes
                yield ring_buff_read(dut, axilite_writer, axilite_reader,
                                     ring_buff, ring_buff_addr,
                                     max_len_capture, pkts, latencies,
                                     inter_packet_times)

                # make sure no error occured
                errs = yield axilite_reader.read(CPUREG_OFFSET_STATUS_ERRS)
                assert errs == 0x0

                # make sure packet count is correct
                pkt_cnt = \
                    yield axilite_reader.read(CPUREG_OFFSET_STATUS_PKT_CNT)
                assert pkt_cnt == len(pkts)

                # make sure module is deactivated now
                active = yield axilite_reader.read(CPUREG_OFFSET_STATUS_ACTIVE)
                assert active == 0

                # clear the ring buffer contents
                ring_buff.clear()
Пример #8
0
        (r"/entity/unselect", view.entity.EntityUnSelectHandler),
        (r"/entity/top", view.entity.EntityTopHandler),
        (r"/entity/untop", view.entity.EntityUnTopHandler),
        (r"/entity/released", view.entity.EntityReleasedHandler),
        (r"/package", view.package.PackageHandler),
        (r".*", view.index.ErrorHandler)]

application = Application(
    urls,
    cookie_secret="qg6iZZuQSSmfKlYKyjB19dr+q9MfcEN7re2VNDEP5Sw=",
    login_url="/login",
    template_path=config.setting['template'],
    static_path=config.setting['static'],
    debug=True,
    xsrf_cookies=False,  #True
    autoescape=None)
# http://127.0.0.1:8888/
if __name__ == "__main__":
    reload(sys)
    sys.setdefaultencoding("utf-8")
    Log.start(config.setting['log_path'], Log.DEBUG)
    Mem.start(config.setting['mem']['host'], config.setting['mem']['port'])

    http_server = HTTPServer(application, xheaders=True)
    if len(sys.argv) >= 2:
        http_server.listen(int(sys.argv[1]))
    else:
        http_server.listen(config.setting['listen_port'])
    tornado.autoreload.start(IOLoop.instance(), 500)
    IOLoop.instance().start()
Пример #9
0
    def clear_cache(self, key):

        Mem.delete(key)
Пример #10
0
    def get_cache(self, key):

        return Mem.get(key)
Пример #11
0
    def set_cache(self, key, val, time_out):

        return Mem.set(key, val, time_out)
Пример #12
0
def nt_gen_replay_mem_read_test(dut):
    """Test bench main function."""
    # open trace file
    trace = File("files/random.file")

    # get trace file size
    trace_size = trace.size()

    # trace file size must be a multiple of AXI data width
    if trace.size() % (AXI_BIT_WIDTH / 8) != 0:
        raise cocotb.result.TestFailure("invalid trace size")

    # calculate ring buffer sizes
    ring_buff_sizes = []
    for ring_buff_size in RING_BUFF_SIZES:
        # size of ring buffer is determined by multiplying the size factor by
        # the size of the trace
        ring_buff_size = int(ring_buff_size * trace_size)

        # make sure that the ring buffer size is multiple of AXI data width
        if ring_buff_size % (AXI_BIT_WIDTH / 8) != 0:
            ring_buff_size += AXI_BIT_WIDTH/8 - ring_buff_size % \
                             (AXI_BIT_WIDTH/8)
        ring_buff_sizes.append(ring_buff_size)

    # create a ring buffer memory (initially of size 0) and connect it to the
    # DUT
    ring_buff = Mem(0)
    ring_buff.connect(dut)

    # start the clock
    cocotb.fork(clk_gen(dut.clk, CLK_FREQ_MHZ))

    # deassert sw reset
    dut.rst_sw <= 0

    # initially module start is not triggered
    dut.ctrl_start_i <= 0

    # reset dut
    yield rstn(dut.clk, dut.rstn)

    # start the ring buffer memory main routine
    cocotb.fork(ring_buff.main())

    # wait some more clock cycles
    yield wait_n_cycles(dut.clk, 5)

    # randomly toggle fifo_prog_full input signal
    dut.fifo_prog_full_i <= 0
    cocotb.fork(toggle_signal(dut.clk, dut.fifo_prog_full_i))

    # iterate over all ring buffer sizes
    for i, ring_buff_size in enumerate(ring_buff_sizes):

        # set ring buffer size
        ring_buff.set_size(ring_buff_size)

        # iterate over all adderesses where ring buffer shall be located in
        # memory
        for j, ring_buff_addr in enumerate(RING_BUFF_ADDRS):

            # print status
            print("Test %d/%d" % (i * len(RING_BUFF_ADDRS) + j + 1,
                                  len(RING_BUFF_ADDRS) * len(RING_BUFF_SIZES)))

            # we have a total of 8 GByte of memory. Make sure the ring buffer
            # fits at the desired address
            if ring_buff_addr + ring_buff_size > 0x1FFFFFFFF:
                raise cocotb.result.TestFailure("ring buffer is too large")

            # to reduce the simulation memory footprint, provide the memory
            # module the first memory address that we actually care about
            ring_buff.set_offset(ring_buff_addr)

            # apply ring buffer memory location to dut
            dut.ctrl_mem_addr_hi_i <= ring_buff_addr >> 32
            dut.ctrl_mem_addr_lo_i <= ring_buff_addr & 0xFFFFFFFF

            # apply ring buffer address range to dut
            dut.ctrl_mem_range_i <= ring_buff_size - 1

            # apply trace size to dut
            dut.ctrl_trace_size_hi_i <= trace_size >> 32
            dut.ctrl_trace_size_lo_i <= trace_size & 0xFFFFFFFF

            # reset write address pointer
            dut.ctrl_addr_wr_i <= 0

            # start reading from the ring buffer
            dut.ctrl_start_i <= 1
            yield RisingEdge(dut.clk)
            dut.ctrl_start_i <= 0
            yield RisingEdge(dut.clk)

            # start writing the ring buffer
            cocotb.fork(ring_buff_write(dut, ring_buff, trace))

            # start checking dut output and wait until it completes
            yield cocotb.fork(check_output(dut, trace)).join()

            # clear the ring buffer contents
            ring_buff.clear()

    # close trace file
    trace.close()
Пример #13
0
def nt_recv_capture_mem_write_test(dut):
    """Test bench main function."""
    # open file with random content
    try:
        f = File("files/random.file")
    except IOError:
        raise cocotb.result.TestFailure("Generate input data by calling " +
                                        "'./create_random.py' in 'files' " +
                                        "folder!")

    # file size must be a multiple of AXI data width
    if f.size() % (BIT_WIDTH_MEM_WRITE / 8) != 0:
        raise cocotb.result.TestFailure("invalid input data size")

    # create a ring buffer memory (initially of size 0) and connect it to the
    # DuT
    ring_buff = Mem(0)
    ring_buff.connect(dut)

    # start the clock
    cocotb.fork(clk_gen(dut.clk, CLK_FREQ_MHZ))

    # deassert sw reset
    dut.rst_sw <= 0

    # initially module is disabled
    dut.active_i <= 0

    # initially no FIFO flush
    dut.flush_i <= 0

    # reset DuT
    yield rstn(dut.clk, dut.rstn)

    # start the ring buffer memory main routine
    cocotb.fork(ring_buff.main())

    # wait some more clock cycles
    yield wait_n_cycles(dut.clk, 5)

    # iterate over all ring buffer sizes
    for i, ring_buff_size in enumerate(RING_BUFF_SIZES):

        # set ring buffer size
        ring_buff.set_size(ring_buff_size)

        # iterate over all adderesses where ring buffer shall be located in
        # memory
        for j, ring_buff_addr in enumerate(RING_BUFF_ADDRS):

            # print status
            print("Test %d/%d" % (i * len(RING_BUFF_ADDRS) + j + 1,
                                  len(RING_BUFF_ADDRS) * len(RING_BUFF_SIZES)))

            # we have a total of 8 GByte of memory. Make sure the ring buffer
            # fits at the desired address
            if ring_buff_addr + ring_buff_size > 0x1FFFFFFFF:
                raise cocotb.result.TestFailure("ring buffer is too large")

            # to reduce the simulation memory footprint, provide the memory
            # module the first memory address that we actually care about
            ring_buff.set_offset(ring_buff_addr)

            # apply ring buffer memory location to dut
            dut.mem_addr_hi_i <= ring_buff_addr >> 32
            dut.mem_addr_lo_i <= ring_buff_addr & 0xFFFFFFFF

            # apply ring buffer address range to dut
            dut.mem_range_i <= ring_buff_size - 1

            # reset read address pointer
            dut.addr_rd_i <= 0

            # start a couroutine that applies input data
            cocotb.fork(apply_input(dut, f))

            # wait a few clock cycles
            yield wait_n_cycles(dut.clk, 10)

            # start the ring buffer read coroutine and wait until it completes
            yield ring_buff_read(dut, ring_buff, f)

            # clear the ring buffer contents
            ring_buff.clear()

    # close file
    f.close()