Пример #1
0
    def encoder(self):
        """ The original Faceswap Encoder Network.

        The encoder for the original model has it's weights shared between both the "A" and "B"
        side of the model, so only one instance is created :func:`build_model`. However this same
        instance is then used twice (once for A and once for B) meaning that the weights get
        shared.

        Returns
        -------
        :class:`keras.models.Model`
            The Keras encoder model, for sharing between inputs from both sides.
        """
        input_ = Input(shape=self.input_shape)
        var_x = input_
        var_x = Conv2DBlock(128, activation="leakyrelu")(var_x)
        var_x = Conv2DBlock(256, activation="leakyrelu")(var_x)
        var_x = Conv2DBlock(512, activation="leakyrelu")(var_x)
        if not self.low_mem:
            var_x = Conv2DBlock(1024, activation="leakyrelu")(var_x)
        var_x = Dense(self.encoder_dim)(Flatten()(var_x))
        var_x = Dense(4 * 4 * 1024)(var_x)
        var_x = Reshape((4, 4, 1024))(var_x)
        var_x = UpscaleBlock(512, activation="leakyrelu")(var_x)
        return KerasModel(input_, var_x, name="encoder")
Пример #2
0
    def encoder(self):
        """ Unbalanced Encoder """
        kwargs = dict(kernel_initializer=self.kernel_initializer)
        encoder_complexity = 128 if self.low_mem else self.config["complexity_encoder"]
        dense_dim = 384 if self.low_mem else 512
        dense_shape = self.input_shape[0] // 16
        input_ = Input(shape=self.input_shape)

        var_x = input_
        var_x = Conv2DBlock(encoder_complexity,
                            normalization="instance",
                            activation="leakyrelu",
                            **kwargs)(var_x)
        var_x = Conv2DBlock(encoder_complexity * 2,
                            normalization="instance",
                            activation="leakyrelu",
                            **kwargs)(var_x)
        var_x = Conv2DBlock(encoder_complexity * 4, **kwargs, activation="leakyrelu")(var_x)
        var_x = Conv2DBlock(encoder_complexity * 6, **kwargs, activation="leakyrelu")(var_x)
        var_x = Conv2DBlock(encoder_complexity * 8, **kwargs, activation="leakyrelu")(var_x)
        var_x = Dense(self.encoder_dim,
                      kernel_initializer=self.kernel_initializer)(Flatten()(var_x))
        var_x = Dense(dense_shape * dense_shape * dense_dim,
                      kernel_initializer=self.kernel_initializer)(var_x)
        var_x = Reshape((dense_shape, dense_shape, dense_dim))(var_x)
        return KerasModel(input_, var_x, name="encoder")
Пример #3
0
    def encoder(self):
        """ Encoder Network """
        kwargs = dict(kernel_initializer=self.kernel_initializer)
        input_ = Input(shape=self.input_shape)
        in_conv_filters = self.input_shape[0]
        if self.input_shape[0] > 128:
            in_conv_filters = 128 + (self.input_shape[0] - 128) // 4
        dense_shape = self.input_shape[0] // 16

        var_x = Conv2DBlock(in_conv_filters, activation=None, **kwargs)(input_)
        tmp_x = var_x

        var_x = LeakyReLU(alpha=0.2)(var_x)
        res_cycles = 8 if self.config.get("lowmem", False) else 16
        for _ in range(res_cycles):
            nn_x = ResidualBlock(in_conv_filters, **kwargs)(var_x)
            var_x = nn_x
        # consider adding scale before this layer to scale the residual chain
        tmp_x = LeakyReLU(alpha=0.1)(tmp_x)
        var_x = add([var_x, tmp_x])
        var_x = Conv2DBlock(128, activation="leakyrelu", **kwargs)(var_x)
        var_x = PixelShuffler()(var_x)
        var_x = Conv2DBlock(128, activation="leakyrelu", **kwargs)(var_x)
        var_x = PixelShuffler()(var_x)
        var_x = Conv2DBlock(128, activation="leakyrelu", **kwargs)(var_x)
        var_x = SeparableConv2DBlock(256, **kwargs)(var_x)
        var_x = Conv2DBlock(512, activation="leakyrelu", **kwargs)(var_x)
        if not self.config.get("lowmem", False):
            var_x = SeparableConv2DBlock(1024, **kwargs)(var_x)

        var_x = Dense(self.encoder_dim, **kwargs)(Flatten()(var_x))
        var_x = Dense(dense_shape * dense_shape * 1024, **kwargs)(var_x)
        var_x = Reshape((dense_shape, dense_shape, 1024))(var_x)
        var_x = UpscaleBlock(512, activation="leakyrelu", **kwargs)(var_x)
        return KerasModel(input_, var_x, name="encoder")
Пример #4
0
 def encoder_liae(self):
     """ DFL SAE LIAE Encoder Network """
     input_ = Input(shape=self.input_shape)
     dims = self.input_shape[-1] * self.encoder_dim
     var_x = Conv2DBlock(dims, activation="leakyrelu")(input_)
     var_x = Conv2DBlock(dims * 2, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(dims * 4, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(dims * 8, activation="leakyrelu")(var_x)
     var_x = Flatten()(var_x)
     return KerasModel(input_, var_x, name="encoder_liae")
Пример #5
0
 def encoder(self):
     """ Encoder Network """
     input_ = Input(shape=self.input_shape)
     var_x = input_
     var_x = Conv2DBlock(128)(var_x)
     var_x = Conv2DBlock(256)(var_x)
     var_x = Conv2DBlock(512)(var_x)
     var_x = Conv2DBlock(1024)(var_x)
     var_x = Flatten()(var_x)
     return KerasModel(input_, var_x, name="encoder")
Пример #6
0
 def encoder(self):
     """ Encoder Network """
     input_ = Input(shape=self.input_shape)
     var_x = input_
     var_x = Conv2DBlock(128, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(256, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(512, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(1024, activation="leakyrelu")(var_x)
     var_x = Flatten()(var_x)
     return KerasModel(input_, var_x, name="encoder")
Пример #7
0
 def encoder(self):
     """ DFL H128 Encoder """
     input_ = Input(shape=self.input_shape)
     var_x = Conv2DBlock(128, activation="leakyrelu")(input_)
     var_x = Conv2DBlock(256, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(512, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(1024, activation="leakyrelu")(var_x)
     var_x = Dense(self.encoder_dim)(Flatten()(var_x))
     var_x = Dense(8 * 8 * self.encoder_dim)(var_x)
     var_x = Reshape((8, 8, self.encoder_dim))(var_x)
     var_x = UpscaleBlock(self.encoder_dim, activation="leakyrelu")(var_x)
     return KerasModel(input_, var_x, name="encoder")
Пример #8
0
 def encoder(self):
     """ Encoder Network """
     input_ = Input(shape=self.input_shape)
     var_x = input_
     var_x = Conv2DBlock(128)(var_x)
     var_x = Conv2DBlock(256)(var_x)
     var_x = Conv2DBlock(512)(var_x)
     var_x = Dense(self.encoder_dim)(Flatten()(var_x))
     var_x = Dense(4 * 4 * 512)(var_x)
     var_x = Reshape((4, 4, 512))(var_x)
     var_x = UpscaleBlock(256)(var_x)
     return KerasModel(input_, var_x, name="encoder")
Пример #9
0
 def encoder(self):
     """ DFL H128 Encoder """
     input_ = Input(shape=self.input_shape)
     var_x = Conv2DBlock(128)(input_)
     var_x = Conv2DBlock(256)(var_x)
     var_x = Conv2DBlock(512)(var_x)
     var_x = Conv2DBlock(1024)(var_x)
     var_x = Dense(self.encoder_dim)(Flatten()(var_x))
     var_x = Dense(8 * 8 * self.encoder_dim)(var_x)
     var_x = Reshape((8, 8, self.encoder_dim))(var_x)
     var_x = UpscaleBlock(self.encoder_dim)(var_x)
     return KerasModel(input_, var_x)
Пример #10
0
 def encoder_df(self):
     """ DFL SAE DF Encoder Network"""
     input_ = Input(shape=self.input_shape)
     dims = self.input_shape[-1] * self.encoder_dim
     lowest_dense_res = self.input_shape[0] // 16
     var_x = Conv2DBlock(dims, activation="leakyrelu")(input_)
     var_x = Conv2DBlock(dims * 2, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(dims * 4, activation="leakyrelu")(var_x)
     var_x = Conv2DBlock(dims * 8, activation="leakyrelu")(var_x)
     var_x = Dense(self.ae_dims)(Flatten()(var_x))
     var_x = Dense(lowest_dense_res * lowest_dense_res * self.ae_dims)(var_x)
     var_x = Reshape((lowest_dense_res, lowest_dense_res, self.ae_dims))(var_x)
     var_x = UpscaleBlock(self.ae_dims, activation="leakyrelu")(var_x)
     return KerasModel(input_, var_x, name="encoder_df")
Пример #11
0
    def encoder(self):
        """ RealFace Encoder Network """
        input_ = Input(shape=self.input_shape)
        var_x = input_

        encoder_complexity = self.config["complexity_encoder"]

        for idx in range(self.downscalers_no - 1):
            var_x = Conv2DBlock(encoder_complexity * 2**idx, activation=None)(var_x)
            var_x = LeakyReLU(alpha=0.2)(var_x)
            var_x = ResidualBlock(encoder_complexity * 2**idx, use_bias=True)(var_x)
            var_x = ResidualBlock(encoder_complexity * 2**idx, use_bias=True)(var_x)

        var_x = Conv2DBlock(encoder_complexity * 2**(idx + 1), activation="leakyrelu")(var_x)

        return KerasModel(input_, var_x, name="encoder")
Пример #12
0
    def encoder(self):
        """ DeLight Encoder Network """
        input_ = Input(shape=self.input_shape)
        var_x = input_

        var_x1 = Conv2DBlock(self.encoder_filters // 2,
                             activation="leakyrelu")(var_x)
        var_x2 = AveragePooling2D()(var_x)
        var_x2 = LeakyReLU(0.1)(var_x2)
        var_x = Concatenate()([var_x1, var_x2])

        var_x1 = Conv2DBlock(self.encoder_filters,
                             activation="leakyrelu")(var_x)
        var_x2 = AveragePooling2D()(var_x)
        var_x2 = LeakyReLU(0.1)(var_x2)
        var_x = Concatenate()([var_x1, var_x2])

        var_x1 = Conv2DBlock(self.encoder_filters * 2,
                             activation="leakyrelu")(var_x)
        var_x2 = AveragePooling2D()(var_x)
        var_x2 = LeakyReLU(0.1)(var_x2)
        var_x = Concatenate()([var_x1, var_x2])

        var_x1 = Conv2DBlock(self.encoder_filters * 4,
                             activation="leakyrelu")(var_x)
        var_x2 = AveragePooling2D()(var_x)
        var_x2 = LeakyReLU(0.1)(var_x2)
        var_x = Concatenate()([var_x1, var_x2])

        var_x1 = Conv2DBlock(self.encoder_filters * 8,
                             activation="leakyrelu")(var_x)
        var_x2 = AveragePooling2D()(var_x)
        var_x2 = LeakyReLU(0.1)(var_x2)
        var_x = Concatenate()([var_x1, var_x2])

        var_x = Dense(self.encoder_dim)(Flatten()(var_x))
        var_x = Dropout(0.05)(var_x)
        var_x = Dense(4 * 4 * 1024)(var_x)
        var_x = Dropout(0.05)(var_x)
        var_x = Reshape((4, 4, 1024))(var_x)

        return KerasModel(input_, var_x, name="encoder")
Пример #13
0
    def __call__(self, inputs):
        """ Call the original Faceswap Encoder

        Parameters
        ----------
        inputs: tensor
            The input tensor to the Faceswap Encoder

        Returns
        -------
        tensor
            The output tensor from the Faceswap Encoder
        """
        var_x = inputs
        filters = self._config["fs_original_min_filters"]
        for i in range(self._depth):
            var_x = Conv2DBlock(filters,
                                activation="leakyrelu",
                                name=f"fs_enc_convblk_{i}")(var_x)
            filters = min(self._config["fs_original_max_filters"], filters * 2)
        return var_x