vprint( verbose, "=========== " + basename.capitalize() +" Training cycle " + str(cycle) +" ================") n_estimators = 10 if cycle: n_estimators = int((time_budget / time_spent_last - 1) * n_estimators - time_stock) # n_estimators = int(((time_budget / time_spent_last) - 1) * 5) # * 5 == aim to use 5/10 of the time budget if n_estimators <= 0: break print("{} estimators".format(n_estimators)) K = D.info['target_num'] task = D.info['task'] autoML = OurAutoML(D.info).fit(D.data['X_train'], D.data['Y_train'], cv=2, n_estimators=n_estimators) vprint( verbose, "[+] Fitting success, time spent so far %5.2f sec" % (time.time() - start)) # Make predictions Y_valid = autoML.predict(D.data['X_valid']) Y_test = autoML.predict(D.data['X_test']) print("score: {} ({} s)".format(autoML.scores.mean(), "%5.2f"%(time.time() - start))) vprint( verbose, "[+] Prediction success, time spent so far %5.2f sec" % (time.time() - start)) # Write results filename_valid = basename + '_valid_' + str(cycle).zfill(3) + '.predict' data_io.write(os.path.join(output_dir,filename_valid), Y_valid) filename_test = basename + '_test_' + str(cycle).zfill(3) + '.predict' data_io.write(os.path.join(output_dir,filename_test), Y_test) vprint( verbose, "[+] Results saved, time spent so far %5.2f sec" % (time.time() - start)) time_spent = time.time() - start vprint( verbose, "[+] End cycle, remaining time %5.2f sec" % (time_budget-time_spent)) cycle += 1 time_spent_last = time.time() - begin time_budget = time_budget - time_spent_last # Remove time spent so far