def __init__(self,traing_data_fileP1='mood_traing_p1.dat',traing_data_fileP2='mood_traing.dat',data_file='tweets_raw.dat'): if self.sentiwordnet: print "using sentiwordnet dictionary" else: print "not using sentiwordnet dictionary" self.clsP1 = MoodDetectTrainer(data_file = traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file = traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open(os.path.join(os.curdir, os.path.normpath('../data/' + data_file)) ,'rb') self.countRows(self.tweetsFile) self.tweetsFile = open(os.path.join(os.curdir , os.path.normpath('../data/' + data_file)) ,'rb') self.limit['en'] = 300000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/' + conf.SENTIWORDNET_DICT_FILENAME self.swn = SentiWordNetCorpusReader(swn_filename)
def __init__(self, traing_data_fileP1='mood_traing_p1.dat', traing_data_fileP2='mood_traing.dat', data_file='tweets_raw.dat'): if self.sentiwordnet: print "using sentiwordnet dictionary" else: print "not using sentiwordnet dictionary" self.clsP1 = MoodDetectTrainer(data_file=traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file=traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open( os.path.join(os.curdir, os.path.normpath('../data/' + data_file)), 'rb') self.countRows(self.tweetsFile) self.tweetsFile = open( os.path.join(os.curdir, os.path.normpath('../data/' + data_file)), 'rb') self.limit['en'] = 300000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/' + conf.SENTIWORDNET_DICT_FILENAME self.swn = SentiWordNetCorpusReader(swn_filename)
def __init__(self,traing_data_fileP1='mood_traing_p1.dat',traing_data_fileP2='mood_traing.dat',data_file='tweets_raw.dat'): self.clsP1 = MoodDetectTrainer(data_file = traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file = traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open(os.path.join(self.dataDir,data_file),'rb') self.countRows(self.tweetsFile) self.tweetsFile = open(os.path.join(self.dataDir,data_file),'rb') self.limit['en'] = 150000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/SentiWordNet_3.0.0_20100705.txt' self.swn = SentiWordNetCorpusReader(swn_filename)
def __init__(self, traing_data_fileP1='mood_traing_p1.dat', traing_data_fileP2='mood_traing.dat', data_file='tweets_raw.dat'): self.clsP1 = MoodDetectTrainer(data_file=traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file=traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open(os.path.join(self.dataDir, data_file), 'rb') self.countRows(self.tweetsFile) self.tweetsFile = open(os.path.join(self.dataDir, data_file), 'rb') self.limit['en'] = 150000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/SentiWordNet_3.0.0_20100705.txt' self.swn = SentiWordNetCorpusReader(swn_filename)
class RawClassifier(object): statsData = {} limit = {} skip = 0 p2_f_limit = 0.6 sentiwordnet = conf.USE_SENTIWORDNET_DICT def __init__(self,traing_data_fileP1='mood_traing_p1.dat',traing_data_fileP2='mood_traing.dat',data_file='tweets_raw.dat'): if self.sentiwordnet: print "using sentiwordnet dictionary" else: print "not using sentiwordnet dictionary" self.clsP1 = MoodDetectTrainer(data_file = traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file = traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open(os.path.join(os.curdir, os.path.normpath('../data/' + data_file)) ,'rb') self.countRows(self.tweetsFile) self.tweetsFile = open(os.path.join(os.curdir , os.path.normpath('../data/' + data_file)) ,'rb') self.limit['en'] = 300000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/' + conf.SENTIWORDNET_DICT_FILENAME self.swn = SentiWordNetCorpusReader(swn_filename) def classifyP1(self,stripSmiles=False): self.classifiyRaw(self.tweetsFile,stripSmiles) self.clsP1.train(self.training_data_p1) print "done training P1" print self.statsData def classifyP2(self): """ remove noisy n-grams """ _st={'tf':0,'df':0} for feutures,label in self.training_data_p1: lang = feutures.pop('x_lang') feuturesP2 = feutures.copy() for f,v in feutures.items(): prob = self.clsP1.classifier.prob_classify({f:v,'x_lang':lang}) _st['tf']+=1 if max(prob.prob('n'),prob.prob('p')) <= self.p2_f_limit: del feuturesP2[f] _st['df']+=1 if len(feuturesP2) >= 3: feuturesP2['x_lang']=lang self.training_data_p2.append((feuturesP2,label)) else: pass print 'p2_length:' , len(self.training_data_p2), ' p1_lenght:' , len(self.training_data_p1) print 'st:' , _st print "deleting p1 set" del self.training_data_p1 del self.clsP1 print "Done deleting p1 set" self.clsP2.train(self.training_data_p2) def stripSmiles(self,text): emos = [':)',':-)',';-)',': )',':d','=)',':p',';)','<3',':(',':-(',': ('] for item in emos: text = text.replace(item,"") return text def stats(self,lang,mood): if not self.statsData.has_key(lang): self.statsData[lang] = {'n':0,'p':0} if self.limit.has_key(lang): limit = self.limit[lang] else: limit = self.limit['default'] if self.statsData[lang][mood] >= limit: return 0 else: self.statsData[lang][mood]+=1 return 1 # CHECK WITH SENTIWORDNET def checkWithSentiwordnet(self, text): count = 0 tokens = nltk.word_tokenize(text) #TODO more languages #tokens = [w for w in tokens if not w in nltk.corpus.stopwords.words('english')] if len(tokens) > 0: for token in tokens: synsets = self.swn.senti_synsets(token) if len(synsets) > 0: # TODO no tiene por que ser este lemma. Comprobar la categoria lemma = synsets[0] count = count + lemma.pos_score - lemma.neg_score #print count, " points for tokens :", tokens if count > 0.5: return 'p' if count < 0.5: return 'n' return 'x' # CHECK WITH FINANCIAL DICTIONARIES def checkWithFinancialDict(self,text): count = self.containsPositiveWord(text) + self.containsNegativeWord(text); if count > 0: return 'p' if count < 0: return 'n' return 'x' def containsPositiveWord(self,text): count = 0 for item in dictionary.positive: if item in text: count += 1 #print 'p:',item return count def containsNegativeWord(self,text): count = 0 for item in dictionary.negative: if item in text: #print 'n:', item count -= 1 return count def classifiyRaw(self,file,stripSmiles): while True: try: tweet = cPickle.load(file) except EOFError: print "done classify" break except: print "error" pass if self.skip > 0: print "skip" self.skip -= 1 continue if tweet: text = unicode(tweet.get('text')) if text.lower().find('rt ') != -1: print 'rt' continue lang = self.langClassifier.detect(text) # TODO more languages if lang[0] != 'en': continue if stripSmiles: text = self.stripSmiles(text) if self.sentiwordnet: mood = self.checkWithSentiwordnet(text) else: mood = self.checkWithFinancialDict(text) if mood == 'x': continue sres = self.stats(lang[0], mood) if sres == 0: # limite de idioma alcanzado print 'limit reached for ' , lang[0] continue if sres == -1: print "done for %s" % mood break if self.count and self.count % 100 == 0: print "classified %d tweets" % (self.count) self.count += 1 self.training_data_p1.addRow(text, mood, lang[0]) def countRows(self,file): rows = 0 breakes = 0 while True: try: tweet = cPickle.load(file) rows +=1 except EOFError: break except: breakes +=1 print 'tweets:',rows,' breakes:',breakes
class RawClassifier(object): statsData = {} limit = {} skip = 0 p2_f_limit = 0.6 sentiwordnet = conf.USE_SENTIWORDNET_DICT def __init__(self, traing_data_fileP1='mood_traing_p1.dat', traing_data_fileP2='mood_traing.dat', data_file='tweets_raw.dat'): if self.sentiwordnet: print "using sentiwordnet dictionary" else: print "not using sentiwordnet dictionary" self.clsP1 = MoodDetectTrainer(data_file=traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file=traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open( os.path.join(os.curdir, os.path.normpath('../data/' + data_file)), 'rb') self.countRows(self.tweetsFile) self.tweetsFile = open( os.path.join(os.curdir, os.path.normpath('../data/' + data_file)), 'rb') self.limit['en'] = 300000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/' + conf.SENTIWORDNET_DICT_FILENAME self.swn = SentiWordNetCorpusReader(swn_filename) def classifyP1(self, stripSmiles=False): self.classifiyRaw(self.tweetsFile, stripSmiles) self.clsP1.train(self.training_data_p1) print "done training P1" print self.statsData def classifyP2(self): """ remove noisy n-grams """ _st = {'tf': 0, 'df': 0} for feutures, label in self.training_data_p1: lang = feutures.pop('x_lang') feuturesP2 = feutures.copy() for f, v in feutures.items(): prob = self.clsP1.classifier.prob_classify({ f: v, 'x_lang': lang }) _st['tf'] += 1 if max(prob.prob('n'), prob.prob('p')) <= self.p2_f_limit: del feuturesP2[f] _st['df'] += 1 if len(feuturesP2) >= 3: feuturesP2['x_lang'] = lang self.training_data_p2.append((feuturesP2, label)) else: pass print 'p2_length:', len(self.training_data_p2), ' p1_lenght:', len( self.training_data_p1) print 'st:', _st print "deleting p1 set" del self.training_data_p1 del self.clsP1 print "Done deleting p1 set" self.clsP2.train(self.training_data_p2) def stripSmiles(self, text): emos = [ ':)', ':-)', ';-)', ': )', ':d', '=)', ':p', ';)', '<3', ':(', ':-(', ': (' ] for item in emos: text = text.replace(item, "") return text def stats(self, lang, mood): if not self.statsData.has_key(lang): self.statsData[lang] = {'n': 0, 'p': 0} if self.limit.has_key(lang): limit = self.limit[lang] else: limit = self.limit['default'] if self.statsData[lang][mood] >= limit: return 0 else: self.statsData[lang][mood] += 1 return 1 # CHECK WITH SENTIWORDNET def checkWithSentiwordnet(self, text): count = 0 tokens = nltk.word_tokenize(text) #TODO more languages #tokens = [w for w in tokens if not w in nltk.corpus.stopwords.words('english')] if len(tokens) > 0: for token in tokens: synsets = self.swn.senti_synsets(token) if len(synsets) > 0: # TODO no tiene por que ser este lemma. Comprobar la categoria lemma = synsets[0] count = count + lemma.pos_score - lemma.neg_score #print count, " points for tokens :", tokens if count > 0.5: return 'p' if count < 0.5: return 'n' return 'x' # CHECK WITH FINANCIAL DICTIONARIES def checkWithFinancialDict(self, text): count = self.containsPositiveWord(text) + self.containsNegativeWord( text) if count > 0: return 'p' if count < 0: return 'n' return 'x' def containsPositiveWord(self, text): count = 0 for item in dictionary.positive: if item in text: count += 1 #print 'p:',item return count def containsNegativeWord(self, text): count = 0 for item in dictionary.negative: if item in text: #print 'n:', item count -= 1 return count def classifiyRaw(self, file, stripSmiles): while True: try: tweet = cPickle.load(file) except EOFError: print "done classify" break except: print "error" pass if self.skip > 0: print "skip" self.skip -= 1 continue if tweet: text = unicode(tweet.text) if text.lower().find('rt ') != -1: print 'rt' continue lang = self.langClassifier.detect(text) # TODO more languages if lang[0] != 'en': continue if stripSmiles: text = self.stripSmiles(text) if self.sentiwordnet: mood = self.checkWithSentiwordnet(text) else: mood = self.checkWithFinancialDict(text) if mood == 'x': continue sres = self.stats(lang[0], mood) if sres == 0: # limite de idioma alcanzado print 'limit reached for ', lang[0] continue if sres == -1: print "done for %s" % mood break if self.count and self.count % 100 == 0: print "classified %d tweets" % (self.count) self.count += 1 self.training_data_p1.addRow(text, mood, lang[0]) def countRows(self, file): rows = 0 breakes = 0 while True: try: tweet = cPickle.load(file) rows += 1 except EOFError: break except: breakes += 1 print 'tweets:', rows, ' breakes:', breakes
class RawClassifier(object): statsData = {} dataDir = "/home/toni/git/financial-twitter-sentiment-analyzer/tracker/data" limit = {} skip = 0 p2_f_limit = 0.75 def __init__(self,traing_data_fileP1='mood_traing_p1.dat',traing_data_fileP2='mood_traing.dat',data_file='tweets_raw.dat'): self.clsP1 = MoodDetectTrainer(data_file = traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file = traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open(os.path.join(self.dataDir,data_file),'rb') self.countRows(self.tweetsFile) self.tweetsFile = open(os.path.join(self.dataDir,data_file),'rb') self.limit['en'] = 150000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/SentiWordNet_3.0.0_20100705.txt' self.swn = SentiWordNetCorpusReader(swn_filename) def classifyP1(self,stripSmiles=False): self.classifiyRaw(self.tweetsFile,stripSmiles) self.clsP1.train(self.training_data_p1) print "done training P1" print self.statsData def classifyP2(self): """ remove noisy n-grams """ _st={'tf':0,'df':0} for feutures,label in self.training_data_p1: lang = feutures.pop('x_lang') feuturesP2 = feutures.copy() for f,v in feutures.items(): prob = self.clsP1.classifier.prob_classify({f:v,'x_lang':lang}) _st['tf']+=1 if max(prob.prob('n'),prob.prob('p')) <= self.p2_f_limit: del feuturesP2[f] _st['df']+=1 if len(feuturesP2) >= 3: feuturesP2['x_lang']=lang self.training_data_p2.append((feuturesP2,label)) else: pass print 'p2_length:' , len(self.training_data_p2), ' p1_lenght:' , len(self.training_data_p1) print 'st:' , _st print "deleting p1 set" del self.training_data_p1 del self.clsP1 print "Done deleting p1 set" self.clsP2.train(self.training_data_p2) def stripSmiles(self,text): emos = [':)',':-)',';-)',': )',':d','=)',':p',';)','<3',':(',':-(',': ('] for item in emos: text = text.replace(item,"") return text def stats(self,lang,mood): if not self.statsData.has_key(lang): self.statsData[lang] = {'n':0,'p':0} if self.limit.has_key(lang): limit = self.limit[lang] else: limit = self.limit['default'] if self.statsData[lang][mood] >= limit: return 0 else: self.statsData[lang][mood]+=1 return 1 def checkWithSentiwordnet(self, text): tokens = nltk.word_tokenize(text) for token in tokens: synsets = self.swn.senti_synsets(token) if len(synsets) > 0: synset = self.swn.senti_synset(str(synsets[0])) print synset def checkKeyWords(self,text): count = self.containsPositiveWord(text) + self.containsNegativeWord(text); if count > 0: return 'p' if count < 0: return 'n' return 'x' def containsPositiveWord(self,text): count = 0 for item in dictionary.positive: if item in text: count += 1 #print 'p:',item return count def containsNegativeWord(self,text): count = 0 for item in dictionary.negative: if item in text: #print 'n:', item count -= 1 return count def classifiyRaw(self,file,stripSmiles): while True: try: tweet = cPickle.load(file) except EOFError: print "done classify" break except: print "error" pass if self.skip > 0: print "skip" self.skip -= 1 continue if tweet: text = unicode(tweet.get('text')) if text.lower().find('rt ') != -1: print 'rt' continue mood = self.checkKeyWords(text) if mood == 'x': continue lang = self.langClassifier.detect(text) if stripSmiles: text = self.stripSmiles(text) sres = self.stats(lang[0], mood) if sres == 0: # limite de idioma alcanzado print 'limit reached for ' , lang[0] continue if sres == -1: print "done for %s" % mood break if self.count and self.count % 100 == 0: print "classified %d tweets" % (self.count) self.count += 1 self.checkWithSentiwordnet(text) self.training_data_p1.addRow(text, mood, lang[0]) def countRows(self,file): rows = 0 breakes = 0 while True: try: tweet = cPickle.load(file) rows +=1 except EOFError: break except: breakes +=1 print 'tweets:',rows,' breakes:',breakes
class RawClassifier(object): statsData = {} dataDir = "/home/toni/git/financial-twitter-sentiment-analyzer/tracker/data" limit = {} skip = 0 p2_f_limit = 0.75 def __init__(self, traing_data_fileP1='mood_traing_p1.dat', traing_data_fileP2='mood_traing.dat', data_file='tweets_raw.dat'): self.clsP1 = MoodDetectTrainer(data_file=traing_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file=traing_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsFile = open(os.path.join(self.dataDir, data_file), 'rb') self.countRows(self.tweetsFile) self.tweetsFile = open(os.path.join(self.dataDir, data_file), 'rb') self.limit['en'] = 150000 self.limit['default'] = 10000 self.count = 0 swn_filename = '../dict/sentiwordnet/SentiWordNet_3.0.0_20100705.txt' self.swn = SentiWordNetCorpusReader(swn_filename) def classifyP1(self, stripSmiles=False): self.classifiyRaw(self.tweetsFile, stripSmiles) self.clsP1.train(self.training_data_p1) print "done training P1" print self.statsData def classifyP2(self): """ remove noisy n-grams """ _st = {'tf': 0, 'df': 0} for feutures, label in self.training_data_p1: lang = feutures.pop('x_lang') feuturesP2 = feutures.copy() for f, v in feutures.items(): prob = self.clsP1.classifier.prob_classify({ f: v, 'x_lang': lang }) _st['tf'] += 1 if max(prob.prob('n'), prob.prob('p')) <= self.p2_f_limit: del feuturesP2[f] _st['df'] += 1 if len(feuturesP2) >= 3: feuturesP2['x_lang'] = lang self.training_data_p2.append((feuturesP2, label)) else: pass print 'p2_length:', len(self.training_data_p2), ' p1_lenght:', len( self.training_data_p1) print 'st:', _st print "deleting p1 set" del self.training_data_p1 del self.clsP1 print "Done deleting p1 set" self.clsP2.train(self.training_data_p2) def stripSmiles(self, text): emos = [ ':)', ':-)', ';-)', ': )', ':d', '=)', ':p', ';)', '<3', ':(', ':-(', ': (' ] for item in emos: text = text.replace(item, "") return text def stats(self, lang, mood): if not self.statsData.has_key(lang): self.statsData[lang] = {'n': 0, 'p': 0} if self.limit.has_key(lang): limit = self.limit[lang] else: limit = self.limit['default'] if self.statsData[lang][mood] >= limit: return 0 else: self.statsData[lang][mood] += 1 return 1 def checkWithSentiwordnet(self, text): tokens = nltk.word_tokenize(text) for token in tokens: synsets = self.swn.senti_synsets(token) if len(synsets) > 0: synset = self.swn.senti_synset(str(synsets[0])) print synset def checkKeyWords(self, text): count = self.containsPositiveWord(text) + self.containsNegativeWord( text) if count > 0: return 'p' if count < 0: return 'n' return 'x' def containsPositiveWord(self, text): count = 0 for item in dictionary.positive: if item in text: count += 1 #print 'p:',item return count def containsNegativeWord(self, text): count = 0 for item in dictionary.negative: if item in text: #print 'n:', item count -= 1 return count def classifiyRaw(self, file, stripSmiles): while True: try: tweet = cPickle.load(file) except EOFError: print "done classify" break except: print "error" pass if self.skip > 0: print "skip" self.skip -= 1 continue if tweet: text = unicode(tweet.get('text')) if text.lower().find('rt ') != -1: print 'rt' continue mood = self.checkKeyWords(text) if mood == 'x': continue lang = self.langClassifier.detect(text) if stripSmiles: text = self.stripSmiles(text) sres = self.stats(lang[0], mood) if sres == 0: # limite de idioma alcanzado print 'limit reached for ', lang[0] continue if sres == -1: print "done for %s" % mood break if self.count and self.count % 100 == 0: print "classified %d tweets" % (self.count) self.count += 1 self.checkWithSentiwordnet(text) self.training_data_p1.addRow(text, mood, lang[0]) def countRows(self, file): rows = 0 breakes = 0 while True: try: tweet = cPickle.load(file) rows += 1 except EOFError: break except: breakes += 1 print 'tweets:', rows, ' breakes:', breakes