Пример #1
0
 def testModelHasExpectedNumberOfParameters(self):
     batch_size = 5
     height, width = 299, 299
     inputs = tf.random_uniform((batch_size, height, width, 3))
     with slim.arg_scope(inception.inception_v3_arg_scope()):
         inception.inception_v3_base(inputs)
     total_params, _ = slim.model_analyzer.analyze_vars(
         slim.get_model_variables())
     self.assertAlmostEqual(21802784, total_params)
Пример #2
0
    def testBuildAndCheckAllEndPointsUptoMixed7c(self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_v3_base(inputs,
                                                    final_endpoint='Mixed_7c')
        endpoints_shapes = {
            'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
            'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
            'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
            'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
            'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
            'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
            'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
            'Mixed_5b': [batch_size, 35, 35, 256],
            'Mixed_5c': [batch_size, 35, 35, 288],
            'Mixed_5d': [batch_size, 35, 35, 288],
            'Mixed_6a': [batch_size, 17, 17, 768],
            'Mixed_6b': [batch_size, 17, 17, 768],
            'Mixed_6c': [batch_size, 17, 17, 768],
            'Mixed_6d': [batch_size, 17, 17, 768],
            'Mixed_6e': [batch_size, 17, 17, 768],
            'Mixed_7a': [batch_size, 8, 8, 1280],
            'Mixed_7b': [batch_size, 8, 8, 2048],
            'Mixed_7c': [batch_size, 8, 8, 2048]
        }
        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertTrue(endpoint_name in end_points)
            self.assertListEqual(
                end_points[endpoint_name].get_shape().as_list(),
                expected_shape)
Пример #3
0
    def testBuildBaseNetwork(self):
        batch_size = 5
        height, width = 299, 299

        inputs = tf.random_uniform((batch_size, height, width, 3))
        final_endpoint, end_points = inception.inception_v3_base(inputs)
        self.assertTrue(
            final_endpoint.op.name.startswith('InceptionV3/Mixed_7c'))
        self.assertListEqual(final_endpoint.get_shape().as_list(),
                             [batch_size, 8, 8, 2048])
        expected_endpoints = [
            'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
            'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
            'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a',
            'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a',
            'Mixed_7b', 'Mixed_7c'
        ]
        self.assertItemsEqual(end_points.keys(), expected_endpoints)
Пример #4
0
    def testBuildOnlyUptoFinalEndpoint(self):
        batch_size = 5
        height, width = 299, 299
        endpoints = [
            'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
            'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
            'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a',
            'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a',
            'Mixed_7b', 'Mixed_7c'
        ]

        for index, endpoint in enumerate(endpoints):
            with tf.Graph().as_default():
                inputs = tf.random_uniform((batch_size, height, width, 3))
                out_tensor, end_points = inception.inception_v3_base(
                    inputs, final_endpoint=endpoint)
                self.assertTrue(
                    out_tensor.op.name.startswith('InceptionV3/' + endpoint))
                self.assertItemsEqual(endpoints[:index + 1], end_points.keys())