Пример #1
0
    def __init__(self, big_cfg, height, width):
        self.big_cfg = big_cfg
        self.model_dir = big_cfg.dataset.model_dir
        self.rot_coord = big_cfg.network.ROT_COORD
        self.pixel_means = big_cfg.network.PIXEL_MEANS[[2, 1, 0]]
        self.pixel_means = self.pixel_means.reshape([3, 1,
                                                     1]).astype(np.float32)
        self.K = big_cfg.dataset.INTRINSIC_MATRIX
        self.T_means = big_cfg.dataset.trans_means
        self.T_stds = big_cfg.dataset.trans_stds
        self.height = height
        self.width = width
        self.zNear = big_cfg.dataset.ZNEAR
        self.zFar = big_cfg.dataset.ZFAR

        self.render_machine = None
        if big_cfg.dataset.dataset.startswith("ModelNet"):
            self.modelnet_root = big_cfg.modelnet_root
            self.texture_path = os.path.join(self.modelnet_root,
                                             "gray_texture.png")
            from lib.render_glumpy.render_py_light_modelnet_multi import (
                Render_Py_Light_ModelNet_Multi, )

            self.model_path_list = [
                os.path.join(self.model_dir, "{}.obj".format(model_name))
                for model_name in big_cfg.dataset.class_name
            ]
            self.render_machine = Render_Py_Light_ModelNet_Multi(
                self.model_path_list,
                self.texture_path,
                self.K,
                self.width,
                self.height,
                self.zNear,
                self.zFar,
                brightness_ratios=[0.7],
            )
        else:
            self.render_machine = Render_Py(
                self.model_dir,
                big_cfg.dataset.class_name,
                self.K,
                self.width,
                self.height,
                self.zNear,
                self.zFar,
            )

        self.reinit = True

        self.batch_size = big_cfg.TRAIN.BATCH_PAIRS  # will update according to data
        self.Kinv = np.linalg.inv(np.matrix(self.K))
        print("build render_machine: ", self.render_machine)
Пример #2
0
class batchUpdaterPyMulti:
    def __init__(self, big_cfg, height, width):
        self.big_cfg = big_cfg
        self.model_dir = big_cfg.dataset.model_dir
        self.rot_coord = big_cfg.network.ROT_COORD
        self.pixel_means = big_cfg.network.PIXEL_MEANS[[2, 1, 0]]
        self.pixel_means = self.pixel_means.reshape([3, 1,
                                                     1]).astype(np.float32)
        self.K = big_cfg.dataset.INTRINSIC_MATRIX
        self.T_means = big_cfg.dataset.trans_means
        self.T_stds = big_cfg.dataset.trans_stds
        self.height = height
        self.width = width
        self.zNear = big_cfg.dataset.ZNEAR
        self.zFar = big_cfg.dataset.ZFAR

        self.render_machine = None
        if big_cfg.dataset.dataset.startswith("ModelNet"):
            self.modelnet_root = big_cfg.modelnet_root
            self.texture_path = os.path.join(self.modelnet_root,
                                             "gray_texture.png")
            from lib.render_glumpy.render_py_light_modelnet_multi import (
                Render_Py_Light_ModelNet_Multi, )

            self.model_path_list = [
                os.path.join(self.model_dir, "{}.obj".format(model_name))
                for model_name in big_cfg.dataset.class_name
            ]
            self.render_machine = Render_Py_Light_ModelNet_Multi(
                self.model_path_list,
                self.texture_path,
                self.K,
                self.width,
                self.height,
                self.zNear,
                self.zFar,
                brightness_ratios=[0.7],
            )
        else:
            self.render_machine = Render_Py(
                self.model_dir,
                big_cfg.dataset.class_name,
                self.K,
                self.width,
                self.height,
                self.zNear,
                self.zFar,
            )

        self.reinit = True

        self.batch_size = big_cfg.TRAIN.BATCH_PAIRS  # will update according to data
        self.Kinv = np.linalg.inv(np.matrix(self.K))
        print("build render_machine: ", self.render_machine)

    def get_names(self, big_cfg):
        """

        :param small_cfg:
        :return:
        """
        pred = ["image_observed", "image_rendered"]
        # pred = []
        if big_cfg.network.PRED_FLOW:
            pred.append("flow_est_crop")
            pred.append("flow_loss")
        pred.append("rot_est")
        pred.append("rot_gt")
        pred.append("trans_est")
        pred.append("trans_gt")
        if big_cfg.train_iter.SE3_DIST_LOSS:
            pred.append("rot_loss")
            pred.append("trans_loss")
        if big_cfg.train_iter.SE3_PM_LOSS:
            pred.append("point_matching_loss")
        if self.big_cfg["network"]["PRED_MASK"]:
            pred.append("zoom_mask_prob")
            pred.append("zoom_mask_gt_observed")
            pred.append("mask_pred")  # unzoomed

        return pred

    def forward(self, data_batch, preds, big_cfg):
        """
        :param data:
            image_observed
            image_rendered
            depth_gt_observed
            - depth_observed
            - depth_rendered
            - mask_real
            src_pose
            tgt_pose
        :param label:
            rot_i2r
            trans_i2r
            - flow_i2r
            - flow_i2r_weights
            - point_cloud_model
            - point_cloud_weights
            - point_cloud_real
        :param preds:
            image_observed
            image_rendered
            - flow_i2r_est
            - flow_i2r_loss
            rot_i2r
            trans_i2r
            - rot_i2r_loss
            - trans_i2r_loss
            - point_matching_loss
        :return updated_batch:
        """
        data_array = data_batch.data
        label_array = data_batch.label
        num_ctx = len(data_array)
        pred_names = self.get_names(big_cfg)
        init_time = 0
        render_time = 0
        image_time = 0
        flow_time = 0
        update_time = 0
        mask_time = 0
        io_time = 0
        data_names = [x[0] for x in data_batch.provide_data[0]]
        label_names = [x[0] for x in data_batch.provide_label[0]]
        src_pose_all = [
            data_array[ctx_i][data_names.index("src_pose")].asnumpy()
            for ctx_i in range(num_ctx)
        ]
        tgt_pose_all = [
            data_array[ctx_i][data_names.index("tgt_pose")].asnumpy()
            for ctx_i in range(num_ctx)
        ]
        class_index_all = [
            data_array[ctx_i][data_names.index("class_index")].asnumpy()
            for ctx_i in range(num_ctx)
        ]
        t = time.time()
        # print("pred lens: {}".format(len(preds)))
        # for i in preds:
        #     print(i[0].shape)
        rot_est_all = [
            preds[pred_names.index("rot_est")][ctx_i].asnumpy()
            for ctx_i in range(num_ctx)
        ]
        trans_est_all = [
            preds[pred_names.index("trans_est")][ctx_i].asnumpy()
            for ctx_i in range(num_ctx)
        ]
        init_time += time.time() - t

        if self.big_cfg.network.PRED_FLOW:
            depth_gt_observed_all = [
                data_array[ctx_i][data_names.index(
                    "depth_gt_observed")].asnumpy() for ctx_i in range(num_ctx)
            ]

        for ctx_i in range(num_ctx):
            batch_size = data_array[ctx_i][0].shape[0]
            assert batch_size == self.batch_size, "{} vs. {}".format(
                batch_size, self.batch_size)
            cur_ctx = data_array[ctx_i][0].context
            t = time.time()
            src_pose = src_pose_all[
                ctx_i]  # data_array[ctx_i][data_names.index('src_pose')].asnumpy()
            tgt_pose = tgt_pose_all[
                ctx_i]  # data_array[ctx_i][data_names.index('tgt_pose')].asnumpy()
            if self.big_cfg.network.PRED_FLOW:
                depth_gt_observed = depth_gt_observed_all[
                    ctx_i]  # data_array[ctx_i][data_names.index('depth_gt_observed')] # ndarray

            class_index = class_index_all[
                ctx_i]  # data_array[ctx_i][data_names.index('class_index')].asnumpy()
            rot_est = rot_est_all[
                ctx_i]  # preds[pred_names.index('rot_est')][ctx_i].asnumpy()
            trans_est = trans_est_all[
                ctx_i]  # preds[pred_names.index('trans_est')][ctx_i].asnumpy()
            init_time += time.time() - t

            refined_image_array = np.zeros(
                (batch_size, 3, self.height, self.width))
            refined_depth_array = np.zeros(
                (batch_size, 1, self.height, self.width))
            rot_res_array = np.zeros((batch_size, 4))
            trans_res_array = np.zeros((batch_size, 3))
            refined_pose_array = np.zeros((batch_size, 3, 4))
            KT_array = np.zeros((batch_size, 3, 4))
            for batch_idx in range(batch_size):
                pre_pose = np.squeeze(src_pose[batch_idx])
                r_delta = np.squeeze(rot_est[batch_idx])
                t_delta = np.squeeze(trans_est[batch_idx])

                refined_pose = RT_transform.RT_transform(
                    pre_pose,
                    r_delta,
                    t_delta,
                    self.T_means,
                    self.T_stds,
                    rot_coord=self.rot_coord,
                )
                t = time.time()
                if not self.big_cfg.dataset.dataset.startswith("ModelNet"):
                    refined_image, refined_depth = self.render_machine.render(
                        class_index[batch_idx].astype("int"),
                        refined_pose[:3, :3],
                        refined_pose[:3, 3],
                        r_type="mat",
                    )
                else:
                    idx = 2  # random.randint(0, 100)

                    # generate random light_position
                    if idx % 6 == 0:
                        light_position = [1, 0, 1]
                    elif idx % 6 == 1:
                        light_position = [1, 1, 1]
                    elif idx % 6 == 2:
                        light_position = [0, 1, 1]
                    elif idx % 6 == 3:
                        light_position = [-1, 1, 1]
                    elif idx % 6 == 4:
                        light_position = [-1, 0, 1]
                    elif idx % 6 == 5:
                        light_position = [0, 0, 1]
                    else:
                        raise Exception("???")
                    # print("light_position a: {}".format(light_position))
                    light_position = np.array(light_position) * 0.5
                    # inverse yz
                    light_position[0] += refined_pose[0, 3]
                    light_position[1] -= refined_pose[1, 3]
                    light_position[2] -= refined_pose[2, 3]
                    # print("light_position b: {}".format(light_position))

                    colors = np.array([1, 1, 1])  # white light
                    intensity = np.random.uniform(0.9, 1.1, size=(3, ))
                    colors_randk = 0  # random.randint(0, colors.shape[0] - 1)
                    light_intensity = colors[colors_randk] * intensity
                    # print('light intensity: ', light_intensity)

                    # randomly choose a render machine
                    rm_randk = 0  # random.randint(0, len(brightness_ratios) - 1)
                    refined_image, refined_depth = self.render_machine.render(
                        class_index[batch_idx].astype("int"),
                        refined_pose[:3, :3],
                        refined_pose[:3, 3],
                        light_position,
                        light_intensity,
                        brightness_k=rm_randk,
                        r_type="mat",
                    )
                render_time += time.time() - t

                # process refined_image
                t = time.time()
                refined_image = (refined_image[:, :, [2, 1, 0]].transpose(
                    [2, 0, 1]).astype(np.float32))
                refined_image -= self.pixel_means
                image_time += time.time() - t

                # get se3_res
                rot_res, trans_res = RT_transform.calc_RT_delta(
                    refined_pose,
                    np.squeeze(tgt_pose[batch_idx]),
                    self.T_means,
                    self.T_stds,
                    rot_coord=self.rot_coord,
                    rot_type="QUAT",
                )
                # print('{}, {}: {}, {}'.format(ctx_i, batch_idx, r_delta, rot_res))

                refined_pose_array[batch_idx] = refined_pose
                refined_image_array[batch_idx] = refined_image
                refined_depth_array[batch_idx] = refined_depth.reshape(
                    (1, self.height, self.width))
                rot_res_array[batch_idx] = rot_res
                trans_res_array[batch_idx] = trans_res

                se3_m = np.zeros([3, 4])
                se3_rotm, se3_t = RT_transform.calc_se3(
                    refined_pose, np.squeeze(tgt_pose[batch_idx]))
                se3_m[:, :3] = se3_rotm
                se3_m[:, 3] = se3_t
                KT_array[batch_idx] = np.dot(self.K, se3_m)

            if self.big_cfg.network.PRED_MASK:
                t = time.time()
                refined_mask_rendered_array = np.zeros(
                    refined_depth_array.shape)
                refined_mask_rendered_array[
                    refined_depth_array >
                    0.2] = 1  # if the mask_rendered input is depth
                mask_time += time.time() - t

            update_package = {
                "image_rendered": refined_image_array,
                "depth_rendered": refined_depth_array,
                "src_pose": refined_pose_array,
                "rot": rot_res_array,
                "trans": trans_res_array,
            }
            if self.big_cfg.network.PRED_FLOW:
                t = time.time()
                gpu_flow_machine = gpu_flow_wrapper(cur_ctx.device_id)
                # import matplotlib.pyplot as plt
                # plt.figure()
                # plt.subplot(1,2,1)
                # plt.imshow(refined_depth_array[0,0])
                # plt.subplot(1,2,2)
                # plt.imshow(depth_gt_observed[0,0])
                # plt.show()

                refined_flow, refined_flow_valid = gpu_flow_machine(
                    refined_depth_array.astype(np.float32),
                    depth_gt_observed.astype(np.float32),
                    KT_array.astype(np.float32),
                    np.array(self.Kinv).astype(np.float32),
                )
                # problem with py3
                # print('updater, flow: ', refined_flow.shape, np.unique(refined_flow))
                # print('updater, flow weights: ', refined_flow_valid.shape, np.unique(refined_flow_valid))
                # print('KT: ', KT_array[0])
                # print('Kinv: ', self.Kinv)
                flow_time += time.time() - t
                refined_flow_weights = np.tile(refined_flow_valid,
                                               [1, 2, 1, 1])
                update_package["flow"] = refined_flow
                update_package["flow_weights"] = refined_flow_weights
            if self.big_cfg.network.INPUT_MASK:
                update_package["mask_rendered"] = refined_mask_rendered_array

            t = time.time()
            data_array[ctx_i] = self.update_data_batch(data_array[ctx_i],
                                                       data_names,
                                                       update_package)
            label_array[ctx_i] = self.update_data_batch(
                label_array[ctx_i], label_names, update_package)
            update_time += time.time() - t

        t = time.time()
        new_data_batch = mx.io.DataBatch(
            data=data_array,
            label=label_array,
            pad=data_batch.pad,
            index=data_batch.index,
            provide_data=data_batch.provide_data,
            provide_label=data_batch.provide_label,
        )
        io_time += time.time() - t
        # print("---------------------------------")
        # print("init_time: {:.3f} sec".format(init_time))
        # print("render_time: {:.3f} sec".format(render_time))
        # print("image_time: {:.3f} sec".format(image_time))
        # print("flow_time: {:.3f} sec".format(flow_time))
        # print("mask_time: {:.3f} sec".format(mask_time))
        # print("update_time: {:.3f} sec".format(update_time))
        # print("io_time: {:.3f} sec".format(io_time))
        # print("all_time: {:.3f} sec".format(time.time() - t_all))
        # print("---------------------------------")
        return new_data_batch

    def update_data_batch(self, data, data_names, update_package):
        import mxnet.ndarray as nd

        for blob_idx, blob_name in enumerate(data_names):
            if blob_name not in update_package:
                continue
            # print('blob_idx: {}, blob_name: {} -- {}'.format(blob_idx, blob_name, np.max(update_package[blob_name])))
            data[blob_idx] = nd.array(update_package[blob_name])
        return data
Пример #3
0
def main():
    sel_classes = classes
    render_machine = Render_Py(model_dir, classes, K, width, height, ZNEAR,
                               ZFAR)
    for cls_idx, cls_name in enumerate(classes):
        if not cls_name in sel_classes:
            continue
        print(cls_idx, cls_name)
        observed_indices = []
        images = [
            fn for fn in os.listdir(
                os.path.join(LM6d_origin_root, '{:02d}'.format(
                    class2idx(cls_name)), 'rgb')) if '.png' in fn
        ]
        images = sorted(images)

        gt_path = os.path.join(LM6d_origin_root,
                               '{:02d}'.format(class2idx(cls_name)), 'gt.yml')
        gt_dict = load_gt(gt_path)

        info_path = os.path.join(LM6d_origin_root,
                                 '{:02d}'.format(class2idx(cls_name)),
                                 'info.yml')
        info_dict = load_info(info_path)

        for observed_img in tqdm(images):
            old_color_path = os.path.join(LM6d_origin_root,
                                          '{:02d}'.format(class2idx(cls_name)),
                                          "rgb/{}".format(observed_img))
            assert os.path.exists(old_color_path), old_color_path
            old_depth_path = os.path.join(LM6d_origin_root,
                                          '{:02d}'.format(class2idx(cls_name)),
                                          "depth/{}".format(observed_img))
            assert os.path.exists(old_depth_path), old_depth_path
            img_id = int(observed_img.replace('.png', ''))
            new_img_id = img_id + 1

            # K
            # K = np.array(info_dict[img_id]['cam_K']).reshape((3, 3))
            color_img = cv2.imread(old_color_path, cv2.IMREAD_COLOR)

            ## depth
            depth = read_img(old_depth_path, 1)
            # print(np.max(depth), np.min(depth))

            # print(color_img.shape)

            new_color_path = os.path.join(
                LM6d_new_root, '{:02d}'.format(class2idx(cls_name)),
                "{:06d}-color.png".format(new_img_id))
            new_depth_path = os.path.join(
                LM6d_new_root, '{:02d}'.format(class2idx(cls_name)),
                "{:06d}-depth.png".format(new_img_id))
            mkdir_if_missing(os.path.dirname(new_color_path))

            copyfile(old_color_path, new_color_path)
            copyfile(old_depth_path, new_depth_path)

            # meta and label
            meta_dict = {}
            num_instance = len(gt_dict[img_id])
            meta_dict['cls_indexes'] = np.zeros((1, num_instance),
                                                dtype=np.int32)
            meta_dict['boxes'] = np.zeros((num_instance, 4), dtype='float32')
            meta_dict['poses'] = np.zeros((3, 4, num_instance),
                                          dtype='float32')
            distances = []
            label_dict = {}
            for ins_id, instance in enumerate(gt_dict[img_id]):
                obj_id = instance['obj_id']
                meta_dict['cls_indexes'][0, ins_id] = obj_id
                obj_bb = np.array(instance['obj_bb'])
                meta_dict['boxes'][ins_id, :] = obj_bb
                # pose
                pose = np.zeros((3, 4))

                R = np.array(instance['cam_R_m2c']).reshape((3, 3))
                t = np.array(instance['cam_t_m2c']) / 1000.  # mm -> m
                pose[:3, :3] = R
                pose[:3, 3] = t
                distances.append(t[2])
                meta_dict['poses'][:, :, ins_id] = pose
                image_gl, depth_gl = render_machine.render(obj_id - 1,
                                                           pose[:3, :3],
                                                           pose[:3, 3],
                                                           r_type='mat')
                image_gl = image_gl.astype('uint8')
                label = np.zeros(depth_gl.shape)
                label[depth_gl != 0] = 1
                label_dict[obj_id] = label
            meta_path = os.path.join(LM6d_new_root,
                                     '{:02d}'.format(class2idx(cls_name)),
                                     "{:06d}-meta.mat".format(new_img_id))
            sio.savemat(meta_path, meta_dict)

            dis_inds = sorted(
                range(len(distances)),
                key=lambda k: -distances[k])  # put deeper objects first
            # label
            res_label = np.zeros((480, 640))
            for dis_id in dis_inds:
                cls_id = meta_dict['cls_indexes'][0, dis_id]
                tmp_label = label_dict[cls_id]
                # label
                res_label[tmp_label == 1] = cls_id

            label_path = os.path.join(LM6d_new_root,
                                      '{:02d}'.format(class2idx(cls_name)),
                                      "{:06d}-label.png".format(new_img_id))
            cv2.imwrite(label_path, res_label)

            # observed idx
            observed_indices.append("{:02d}/{:06d}".format(
                class2idx(cls_name), new_img_id))
Пример #4
0
def main():
    sel_classes = classes
    model_dir = os.path.join(cur_dir, '../../data/LINEMOD_6D/LM6d_converted/models')
    render_machine = Render_Py(model_dir, classes, K, width, height, ZNEAR, ZFAR)
    for cls_idx, cls_name in enumerate(classes):
        if not cls_name in sel_classes:
            continue
        print(cls_idx, cls_name)
        real_indices = []
        images = [fn for fn in os.listdir(os.path.join(LM6d_origin_root,
                                                       '{:02d}'.format(class2idx(cls_name)), 'rgb')) if '.png' in fn]
        images = sorted(images)

        gt_path = os.path.join(LM6d_origin_root, '{:02d}'.format(class2idx(cls_name)), 'gt.yml')
        gt_dict = load_gt(gt_path)

        info_path = os.path.join(LM6d_origin_root, '{:02d}'.format(class2idx(cls_name)), 'info.yml')
        info_dict = load_info(info_path)

        for real_img in tqdm(images):
            old_color_path = os.path.join(LM6d_origin_root, '{:02d}'.format(class2idx(cls_name)), "rgb/{}".format(real_img))
            assert os.path.exists(old_color_path), old_color_path
            old_depth_path = os.path.join(LM6d_origin_root, '{:02d}'.format(class2idx(cls_name)), "depth/{}".format(real_img))
            assert os.path.exists(old_depth_path), old_depth_path
            img_id = int(real_img.replace('.png', ''))
            new_img_id = img_id + 1

            # K
            # K = np.array(info_dict[img_id]['cam_K']).reshape((3, 3))
            color_img = cv2.imread(old_color_path, cv2.IMREAD_COLOR)

            ## depth
            depth = read_img(old_depth_path, 1)
            # print(np.max(depth), np.min(depth))

            # print(color_img.shape)

            new_color_path = os.path.join(LM6d_new_root, '{:02d}'.format(class2idx(cls_name)),
                                          "{:06d}-color.png".format(new_img_id))
            new_depth_path = os.path.join(LM6d_new_root, '{:02d}'.format(class2idx(cls_name)),
                                          "{:06d}-depth.png".format(new_img_id))
            mkdir_if_missing(os.path.dirname(new_color_path))

            copyfile(old_color_path, new_color_path)
            copyfile(old_depth_path, new_depth_path)

            # meta and label
            meta_dict = {}
            num_instance = len(gt_dict[img_id])
            meta_dict['cls_indexes'] = np.zeros((1, num_instance), dtype=np.int32)
            meta_dict['boxes'] = np.zeros((num_instance, 4), dtype='float32')
            meta_dict['poses'] = np.zeros((3,4,num_instance), dtype='float32')
            distances = []
            label_dict = {}
            for ins_id, instance in enumerate(gt_dict[img_id]):
                obj_id = instance['obj_id']
                meta_dict['cls_indexes'][0, ins_id] = obj_id
                obj_bb = np.array(instance['obj_bb'])
                meta_dict['boxes'][ins_id, :] = obj_bb
                # pose
                pose = np.zeros((3, 4))

                R = np.array(instance['cam_R_m2c']).reshape((3, 3))
                t = np.array(instance['cam_t_m2c']) / 1000.  # mm -> m
                pose[:3, :3] = R
                pose[:3, 3] = t
                distances.append(t[2])
                meta_dict['poses'][:,:,ins_id] = pose
                image_gl, depth_gl = render_machine.render(obj_id-1, pose[:3, :3], pose[:3, 3],
                                                            r_type='mat')
                image_gl = image_gl.astype('uint8')
                label = np.zeros(depth_gl.shape)
                label[depth_gl!=0] = 1
                label_dict[obj_id] = label
            meta_path = os.path.join(LM6d_new_root, '{:02d}'.format(class2idx(cls_name)),
                                          "{:06d}-meta.mat".format(new_img_id))
            sio.savemat(meta_path, meta_dict)

            dis_inds = sorted(range(len(distances)), key=lambda k: -distances[k]) # put deeper objects first
            # label
            res_label = np.zeros((480, 640))
            for dis_id in dis_inds:
                cls_id = meta_dict['cls_indexes'][0, dis_id]
                tmp_label = label_dict[cls_id]
                # label
                res_label[tmp_label == 1] = cls_id

            label_path = os.path.join(LM6d_new_root, '{:02d}'.format(class2idx(cls_name)),
                                      "{:06d}-label.png".format(new_img_id))
            cv2.imwrite(label_path, res_label)
            def vis_check():
                fig = plt.figure(figsize=(8, 6), dpi=120)
                plt.subplot(2, 3, 1)

                plt.imshow(color_img[:,:,[2,1,0]])
                plt.title('color_img')

                plt.subplot(2, 3, 2)
                plt.imshow(depth_gl)
                plt.title('depth')

                plt.subplot(2, 3, 3)
                plt.imshow(depth_gl)
                plt.title('depth_gl')

                plt.subplot(2, 3, 4)
                plt.imshow(res_label)
                plt.title('res_label')

                plt.subplot(2,3,5)
                label_v1_path = os.path.join('/data/wanggu/Storage/LINEMOD_SIXD_wods/LM6d_render_v1/data/real',
                                                 '{:02d}'.format(class2idx(cls_name)),
                                          "{:06d}-label.png".format(new_img_id))
                assert os.path.exists(label_v1_path), label_v1_path
                label_v1 = read_img(label_v1_path, 1)
                plt.imshow(label_v1)
                plt.title('label_v1')

                plt.show()
            # vis_check()

            # real idx
            real_indices.append("{:02d}/{:06d}".format(class2idx(cls_name), new_img_id))

        # one idx file for each video of each class
        real_idx_file = os.path.join(real_set_dir, "{}_all.txt".format(cls_name))
        with open(real_idx_file, 'w') as f:
            for real_idx in real_indices:
                f.write(real_idx + '\n')
Пример #5
0
def pred_eval(config,
              predictor,
              test_data,
              imdb_test,
              vis=False,
              ignore_cache=None,
              logger=None,
              pairdb=None):
    """
    wrapper for calculating offline validation for faster data analysis
    in this example, all threshold are set by hand
    :param predictor: Predictor
    :param test_data: data iterator, must be non-shuffle
    :param imdb_test: image database
    :param vis: controls visualization
    :param ignore_cache: ignore the saved cache file
    :param logger: the logger instance
    :return:
    """
    logger.info(imdb_test.result_path)
    logger.info("test iter size: {}".format(config.TEST.test_iter))
    pose_err_file = os.path.join(
        imdb_test.result_path,
        imdb_test.name + "_pose_iter{}.pkl".format(config.TEST.test_iter))
    if os.path.exists(pose_err_file) and not ignore_cache and not vis:
        with open(pose_err_file, "rb") as fid:
            if six.PY3:
                [all_rot_err, all_trans_err, all_poses_est,
                 all_poses_gt] = cPickle.load(fid, encoding="latin1")
            else:
                [all_rot_err, all_trans_err, all_poses_est,
                 all_poses_gt] = cPickle.load(fid)
        imdb_test.evaluate_pose(config, all_poses_est, all_poses_gt)
        pose_add_plots_dir = os.path.join(imdb_test.result_path, "add_plots")
        mkdir_p(pose_add_plots_dir)
        imdb_test.evaluate_pose_add(config,
                                    all_poses_est,
                                    all_poses_gt,
                                    output_dir=pose_add_plots_dir)
        pose_arp2d_plots_dir = os.path.join(imdb_test.result_path,
                                            "arp_2d_plots")
        mkdir_p(pose_arp2d_plots_dir)
        imdb_test.evaluate_pose_arp_2d(config,
                                       all_poses_est,
                                       all_poses_gt,
                                       output_dir=pose_arp2d_plots_dir)
        return

    assert vis or not test_data.shuffle
    assert config.TEST.BATCH_PAIRS == 1
    if not isinstance(test_data, PrefetchingIter):
        test_data = PrefetchingIter(test_data)

    num_pairs = len(pairdb)
    height = 480
    width = 640

    data_time, net_time, post_time = 0.0, 0.0, 0.0

    sum_EPE_all = 0.0
    num_inst_all = 0.0
    sum_EPE_viz = 0.0
    num_inst_viz = 0.0
    sum_EPE_vizbg = 0.0
    num_inst_vizbg = 0.0
    sum_PoseErr = [
        np.zeros((len(imdb_test.classes) + 1, 2))
        for batch_idx in range(config.TEST.test_iter)
    ]

    all_rot_err = [[[] for j in range(config.TEST.test_iter)]
                   for batch_idx in range(len(imdb_test.classes))
                   ]  # num_cls x test_iter
    all_trans_err = [[[] for j in range(config.TEST.test_iter)]
                     for batch_idx in range(len(imdb_test.classes))]

    all_poses_est = [[[] for j in range(config.TEST.test_iter)]
                     for batch_idx in range(len(imdb_test.classes))]
    all_poses_gt = [[[] for j in range(config.TEST.test_iter)]
                    for batch_idx in range(len(imdb_test.classes))]

    num_inst = np.zeros(len(imdb_test.classes) + 1)

    K = config.dataset.INTRINSIC_MATRIX
    if (config.TEST.test_iter > 1 or config.TEST.VISUALIZE) and True:
        print(
            "************* start setup render_glumpy environment... ******************"
        )
        if config.dataset.dataset.startswith("ModelNet"):
            from lib.render_glumpy.render_py_light_modelnet_multi import Render_Py_Light_ModelNet_Multi

            modelnet_root = config.modelnet_root
            texture_path = os.path.join(modelnet_root, "gray_texture.png")

            model_path_list = [
                os.path.join(config.dataset.model_dir,
                             "{}.obj".format(model_name))
                for model_name in config.dataset.class_name
            ]
            render_machine = Render_Py_Light_ModelNet_Multi(
                model_path_list,
                texture_path,
                K,
                width,
                height,
                config.dataset.ZNEAR,
                config.dataset.ZFAR,
                brightness_ratios=[0.7],
            )
        else:
            render_machine = Render_Py(
                config.dataset.model_dir,
                config.dataset.class_name,
                K,
                width,
                height,
                config.dataset.ZNEAR,
                config.dataset.ZFAR,
            )

        def render(render_machine, pose, cls_idx, K=None):
            if config.dataset.dataset.startswith("ModelNet"):
                idx = 2
                # generate random light_position
                if idx % 6 == 0:
                    light_position = [1, 0, 1]
                elif idx % 6 == 1:
                    light_position = [1, 1, 1]
                elif idx % 6 == 2:
                    light_position = [0, 1, 1]
                elif idx % 6 == 3:
                    light_position = [-1, 1, 1]
                elif idx % 6 == 4:
                    light_position = [-1, 0, 1]
                elif idx % 6 == 5:
                    light_position = [0, 0, 1]
                else:
                    raise Exception("???")
                light_position = np.array(light_position) * 0.5
                # inverse yz
                light_position[0] += pose[0, 3]
                light_position[1] -= pose[1, 3]
                light_position[2] -= pose[2, 3]

                colors = np.array([1, 1, 1])  # white light
                intensity = np.random.uniform(0.9, 1.1, size=(3, ))
                colors_randk = 0
                light_intensity = colors[colors_randk] * intensity

                # randomly choose a render machine
                rm_randk = 0  # random.randint(0, len(brightness_ratios) - 1)
                rgb_gl, depth_gl = render_machine.render(
                    cls_idx,
                    pose[:3, :3],
                    pose[:3, 3],
                    light_position,
                    light_intensity,
                    brightness_k=rm_randk,
                    r_type="mat",
                )
                rgb_gl = rgb_gl.astype("uint8")
            else:
                rgb_gl, depth_gl = render_machine.render(cls_idx,
                                                         pose[:3, :3],
                                                         pose[:, 3],
                                                         r_type="mat",
                                                         K=K)
                rgb_gl = rgb_gl.astype("uint8")
            return rgb_gl, depth_gl

        print(
            "***************setup render_glumpy environment succeed ******************"
        )

    if config.TEST.PRECOMPUTED_ICP:
        print("precomputed_ICP")
        config.TEST.test_iter = 1
        all_rot_err = [[[] for j in range(1)]
                       for batch_idx in range(len(imdb_test.classes))]
        all_trans_err = [[[] for j in range(1)]
                         for batch_idx in range(len(imdb_test.classes))]

        all_poses_est = [[[] for j in range(1)]
                         for batch_idx in range(len(imdb_test.classes))]
        all_poses_gt = [[[] for j in range(1)]
                        for batch_idx in range(len(imdb_test.classes))]

        xy_trans_err = [[[] for j in range(1)]
                        for batch_idx in range(len(imdb_test.classes))]
        z_trans_err = [[[] for j in range(1)]
                       for batch_idx in range(len(imdb_test.classes))]
        for idx in range(len(pairdb)):
            pose_path = pairdb[idx]["depth_rendered"][:-10] + "-pose_icp.txt"
            pose_rendered_update = np.loadtxt(pose_path, skiprows=1)
            pose_observed = pairdb[idx]["pose_observed"]
            r_dist_est, t_dist_est = calc_rt_dist_m(pose_rendered_update,
                                                    pose_observed)
            xy_dist = np.linalg.norm(pose_rendered_update[:2, -1] -
                                     pose_observed[:2, -1])
            z_dist = np.linalg.norm(pose_rendered_update[-1, -1] -
                                    pose_observed[-1, -1])
            print(
                "{}: r_dist_est: {}, t_dist_est: {}, xy_dist: {}, z_dist: {}".
                format(idx, r_dist_est, t_dist_est, xy_dist, z_dist))
            class_id = imdb_test.classes.index(pairdb[idx]["gt_class"])
            # store poses estimation and gt
            all_poses_est[class_id][0].append(pose_rendered_update)
            all_poses_gt[class_id][0].append(pairdb[idx]["pose_observed"])
            all_rot_err[class_id][0].append(r_dist_est)
            all_trans_err[class_id][0].append(t_dist_est)
            xy_trans_err[class_id][0].append(xy_dist)
            z_trans_err[class_id][0].append(z_dist)
        all_rot_err = np.array(all_rot_err)
        all_trans_err = np.array(all_trans_err)
        print("rot = {} +/- {}".format(np.mean(all_rot_err[class_id][0]),
                                       np.std(all_rot_err[class_id][0])))
        print("trans = {} +/- {}".format(np.mean(all_trans_err[class_id][0]),
                                         np.std(all_trans_err[class_id][0])))
        num_list = all_trans_err[class_id][0]
        print("xyz: {:.2f} +/- {:.2f}".format(
            np.mean(num_list) * 100,
            np.std(num_list) * 100))
        num_list = xy_trans_err[class_id][0]
        print("xy: {:.2f} +/- {:.2f}".format(
            np.mean(num_list) * 100,
            np.std(num_list) * 100))
        num_list = z_trans_err[class_id][0]
        print("z: {:.2f} +/- {:.2f}".format(
            np.mean(num_list) * 100,
            np.std(num_list) * 100))

        imdb_test.evaluate_pose(config, all_poses_est, all_poses_gt)
        pose_add_plots_dir = os.path.join(imdb_test.result_path,
                                          "add_plots_precomputed_ICP")
        mkdir_p(pose_add_plots_dir)
        imdb_test.evaluate_pose_add(config,
                                    all_poses_est,
                                    all_poses_gt,
                                    output_dir=pose_add_plots_dir)
        pose_arp2d_plots_dir = os.path.join(imdb_test.result_path,
                                            "arp_2d_plots_precomputed_ICP")
        mkdir_p(pose_arp2d_plots_dir)
        imdb_test.evaluate_pose_arp_2d(config,
                                       all_poses_est,
                                       all_poses_gt,
                                       output_dir=pose_arp2d_plots_dir)
        return

    if config.TEST.BEFORE_ICP:
        print("before_ICP")
        config.TEST.test_iter = 1
        all_rot_err = [[[] for j in range(1)]
                       for batch_idx in range(len(imdb_test.classes))]
        all_trans_err = [[[] for j in range(1)]
                         for batch_idx in range(len(imdb_test.classes))]

        all_poses_est = [[[] for j in range(1)]
                         for batch_idx in range(len(imdb_test.classes))]
        all_poses_gt = [[[] for j in range(1)]
                        for batch_idx in range(len(imdb_test.classes))]

        xy_trans_err = [[[] for j in range(1)]
                        for batch_idx in range(len(imdb_test.classes))]
        z_trans_err = [[[] for j in range(1)]
                       for batch_idx in range(len(imdb_test.classes))]
        for idx in range(len(pairdb)):
            pose_path = pairdb[idx]["depth_rendered"][:-10] + "-pose.txt"
            pose_rendered_update = np.loadtxt(pose_path, skiprows=1)
            pose_observed = pairdb[idx]["pose_observed"]
            r_dist_est, t_dist_est = calc_rt_dist_m(pose_rendered_update,
                                                    pose_observed)
            xy_dist = np.linalg.norm(pose_rendered_update[:2, -1] -
                                     pose_observed[:2, -1])
            z_dist = np.linalg.norm(pose_rendered_update[-1, -1] -
                                    pose_observed[-1, -1])
            class_id = imdb_test.classes.index(pairdb[idx]["gt_class"])
            # store poses estimation and gt
            all_poses_est[class_id][0].append(pose_rendered_update)
            all_poses_gt[class_id][0].append(pairdb[idx]["pose_observed"])
            all_rot_err[class_id][0].append(r_dist_est)
            all_trans_err[class_id][0].append(t_dist_est)
            xy_trans_err[class_id][0].append(xy_dist)
            z_trans_err[class_id][0].append(z_dist)

        all_trans_err = np.array(all_trans_err)
        imdb_test.evaluate_pose(config, all_poses_est, all_poses_gt)
        pose_add_plots_dir = os.path.join(imdb_test.result_path,
                                          "add_plots_before_ICP")
        mkdir_p(pose_add_plots_dir)
        imdb_test.evaluate_pose_add(config,
                                    all_poses_est,
                                    all_poses_gt,
                                    output_dir=pose_add_plots_dir)
        pose_arp2d_plots_dir = os.path.join(imdb_test.result_path,
                                            "arp_2d_plots_before_ICP")
        mkdir_p(pose_arp2d_plots_dir)
        imdb_test.evaluate_pose_arp_2d(config,
                                       all_poses_est,
                                       all_poses_gt,
                                       output_dir=pose_arp2d_plots_dir)
        return

    # ------------------------------------------------------------------------------
    t_start = time.time()
    t = time.time()
    for idx, data_batch in enumerate(test_data):
        if np.sum(pairdb[idx]
                  ["pose_rendered"]) == -12:  # NO POINT VALID IN INIT POSE
            print(idx)
            class_id = imdb_test.classes.index(pairdb[idx]["gt_class"])
            for pose_iter_idx in range(config.TEST.test_iter):
                all_poses_est[class_id][pose_iter_idx].append(
                    pairdb[idx]["pose_rendered"])
                all_poses_gt[class_id][pose_iter_idx].append(
                    pairdb[idx]["pose_observed"])

                r_dist = 1000
                t_dist = 1000
                all_rot_err[class_id][pose_iter_idx].append(r_dist)
                all_trans_err[class_id][pose_iter_idx].append(t_dist)
                sum_PoseErr[pose_iter_idx][class_id, :] += np.array(
                    [r_dist, t_dist])
                sum_PoseErr[pose_iter_idx][-1, :] += np.array([r_dist, t_dist])
                # post process
            if idx % 50 == 0:
                logger.info(
                    "testing {}/{} data {:.4f}s net {:.4f}s calc_gt {:.4f}s".
                    format(
                        (idx + 1),
                        num_pairs,
                        data_time / ((idx + 1) * test_data.batch_size),
                        net_time / ((idx + 1) * test_data.batch_size),
                        post_time / ((idx + 1) * test_data.batch_size),
                    ))
            print("in test: NO POINT_VALID IN rendered")
            continue
        data_time += time.time() - t

        t = time.time()

        pose_rendered = pairdb[idx]["pose_rendered"]
        if np.sum(pose_rendered) == -12:
            print(idx)
            class_id = imdb_test.classes.index(pairdb[idx]["gt_class"])
            num_inst[class_id] += 1
            num_inst[-1] += 1
            for pose_iter_idx in range(config.TEST.test_iter):
                all_poses_est[class_id][pose_iter_idx].append(pose_rendered)
                all_poses_gt[class_id][pose_iter_idx].append(
                    pairdb[idx]["pose_observed"])

            # post process
            if idx % 50 == 0:
                logger.info(
                    "testing {}/{} data {:.4f}s net {:.4f}s calc_gt {:.4f}s".
                    format(
                        (idx + 1),
                        num_pairs,
                        data_time / ((idx + 1) * test_data.batch_size),
                        net_time / ((idx + 1) * test_data.batch_size),
                        post_time / ((idx + 1) * test_data.batch_size),
                    ))

            t = time.time()
            continue

        output_all = predictor.predict(data_batch)
        net_time += time.time() - t

        t = time.time()
        rst_iter = []
        for output in output_all:
            cur_rst = {}
            cur_rst["se3"] = np.squeeze(
                output["se3_output"].asnumpy()).astype("float32")

            if not config.TEST.FAST_TEST and config.network.PRED_FLOW:
                cur_rst["flow"] = np.squeeze(
                    output["flow_est_crop_output"].asnumpy().transpose(
                        (2, 3, 1, 0))).astype("float16")
            else:
                cur_rst["flow"] = None
            if config.network.PRED_MASK and config.TEST.UPDATE_MASK not in [
                    "init", "box_rendered"
            ]:
                mask_pred = np.squeeze(
                    output["mask_observed_pred_output"].asnumpy()).astype(
                        "float32")
                cur_rst["mask_pred"] = mask_pred

            rst_iter.append(cur_rst)

        post_time += time.time() - t
        # sample_ratio = 1  # 0.01
        for batch_idx in range(0, test_data.batch_size):
            # if config.TEST.VISUALIZE and not (r_dist>15 and t_dist>0.05):
            #     continue # 3388, 5326
            # calculate the flow error --------------------------------------------
            t = time.time()
            if config.network.PRED_FLOW and not config.TEST.FAST_TEST:
                # evaluate optical flow
                flow_gt = par_generate_gt(config, pairdb[idx])
                if config.network.PRED_FLOW:
                    all_diff = calc_EPE_one_pair(rst_iter[batch_idx], flow_gt,
                                                 "flow")
                sum_EPE_all += all_diff["epe_all"]
                num_inst_all += all_diff["num_all"]
                sum_EPE_viz += all_diff["epe_viz"]
                num_inst_viz += all_diff["num_viz"]
                sum_EPE_vizbg += all_diff["epe_vizbg"]
                num_inst_vizbg += all_diff["num_vizbg"]

            # calculate the se3 error ---------------------------------------------
            # evaluate se3 estimation
            pose_rendered = pairdb[idx]["pose_rendered"]
            class_id = imdb_test.classes.index(pairdb[idx]["gt_class"])
            num_inst[class_id] += 1
            num_inst[-1] += 1
            post_time += time.time() - t

            # iterative refine se3 estimation --------------------------------------------------
            for pose_iter_idx in range(config.TEST.test_iter):
                t = time.time()
                pose_rendered_update = RT_transform(
                    pose_rendered,
                    rst_iter[0]["se3"][:-3],
                    rst_iter[0]["se3"][-3:],
                    config.dataset.trans_means,
                    config.dataset.trans_stds,
                    config.network.ROT_COORD,
                )

                # calculate error
                r_dist, t_dist = calc_rt_dist_m(pose_rendered_update,
                                                pairdb[idx]["pose_observed"])

                # store poses estimation and gt
                all_poses_est[class_id][pose_iter_idx].append(
                    pose_rendered_update)
                all_poses_gt[class_id][pose_iter_idx].append(
                    pairdb[idx]["pose_observed"])

                all_rot_err[class_id][pose_iter_idx].append(r_dist)
                all_trans_err[class_id][pose_iter_idx].append(t_dist)
                sum_PoseErr[pose_iter_idx][class_id, :] += np.array(
                    [r_dist, t_dist])
                sum_PoseErr[pose_iter_idx][-1, :] += np.array([r_dist, t_dist])
                if config.TEST.VISUALIZE:
                    print("idx {}, iter {}: rError: {}, tError: {}".format(
                        idx + batch_idx, pose_iter_idx + 1, r_dist, t_dist))

                post_time += time.time() - t

                # # if more than one iteration
                if pose_iter_idx < (config.TEST.test_iter -
                                    1) or config.TEST.VISUALIZE:
                    t = time.time()
                    # get refined image
                    K_path = pairdb[idx]["image_observed"][:-10] + "-K.txt"
                    if os.path.exists(K_path):
                        K = np.loadtxt(K_path)
                    image_refined, depth_refined = render(
                        render_machine,
                        pose_rendered_update,
                        config.dataset.class_name.index(
                            pairdb[idx]["gt_class"]),
                        K=K,
                    )
                    image_refined = image_refined[:, :, :3]

                    # update minibatch
                    update_package = [{
                        "image_rendered": image_refined,
                        "src_pose": pose_rendered_update
                    }]
                    if config.network.INPUT_DEPTH:
                        update_package[0]["depth_rendered"] = depth_refined
                    if config.network.INPUT_MASK:
                        mask_rendered_refined = np.zeros(depth_refined.shape)
                        mask_rendered_refined[depth_refined > 0.2] = 1
                        update_package[0][
                            "mask_rendered"] = mask_rendered_refined
                        if config.network.PRED_MASK:
                            # init, box_rendered, mask_rendered, box_observed, mask_observed
                            if config.TEST.UPDATE_MASK == "box_rendered":
                                input_names = [
                                    blob_name[0]
                                    for blob_name in data_batch.provide_data[0]
                                ]
                                update_package[0][
                                    "mask_observed"] = np.squeeze(
                                        data_batch.data[0][input_names.index(
                                            "mask_rendered")].asnumpy()
                                        [batch_idx])  # noqa
                            elif config.TEST.UPDATE_MASK == "init":
                                pass
                            else:
                                raise Exception(
                                    "Unknown UPDATE_MASK type: {}".format(
                                        config.network.UPDATE_MASK))

                    pose_rendered = pose_rendered_update
                    data_batch = update_data_batch(config, data_batch,
                                                   update_package)

                    data_time += time.time() - t

                    # forward and get rst
                    if pose_iter_idx < config.TEST.test_iter - 1:
                        t = time.time()
                        output_all = predictor.predict(data_batch)
                        net_time += time.time() - t

                        t = time.time()
                        rst_iter = []
                        for output in output_all:
                            cur_rst = {}
                            if config.network.REGRESSOR_NUM == 1:
                                cur_rst["se3"] = np.squeeze(
                                    output["se3_output"].asnumpy()).astype(
                                        "float32")

                            if not config.TEST.FAST_TEST and config.network.PRED_FLOW:
                                cur_rst["flow"] = np.squeeze(
                                    output["flow_est_crop_output"].asnumpy().
                                    transpose((2, 3, 1, 0))).astype("float16")
                            else:
                                cur_rst["flow"] = None

                            if config.network.PRED_MASK and config.TEST.UPDATE_MASK not in [
                                    "init", "box_rendered"
                            ]:
                                mask_pred = np.squeeze(
                                    output["mask_observed_pred_output"].
                                    asnumpy()).astype("float32")
                                cur_rst["mask_pred"] = mask_pred

                            rst_iter.append(cur_rst)
                            post_time += time.time() - t

        # post process
        if idx % 50 == 0:
            logger.info(
                "testing {}/{} data {:.4f}s net {:.4f}s calc_gt {:.4f}s".
                format(
                    (idx + 1),
                    num_pairs,
                    data_time / ((idx + 1) * test_data.batch_size),
                    net_time / ((idx + 1) * test_data.batch_size),
                    post_time / ((idx + 1) * test_data.batch_size),
                ))

        t = time.time()

    all_rot_err = np.array(all_rot_err)
    all_trans_err = np.array(all_trans_err)

    # save inference results
    if not config.TEST.VISUALIZE:
        with open(pose_err_file, "wb") as f:
            logger.info("saving result cache to {}".format(pose_err_file))
            cPickle.dump(
                [all_rot_err, all_trans_err, all_poses_est, all_poses_gt],
                f,
                protocol=2)
            logger.info("done")

    if config.network.PRED_FLOW:
        logger.info("evaluate flow:")
        logger.info("EPE all: {}".format(sum_EPE_all / max(num_inst_all, 1.0)))
        logger.info("EPE ignore unvisible: {}".format(
            sum_EPE_vizbg / max(num_inst_vizbg, 1.0)))
        logger.info("EPE visible: {}".format(sum_EPE_viz /
                                             max(num_inst_viz, 1.0)))

    logger.info("evaluate pose:")
    imdb_test.evaluate_pose(config, all_poses_est, all_poses_gt)
    # evaluate pose add
    pose_add_plots_dir = os.path.join(imdb_test.result_path, "add_plots")
    mkdir_p(pose_add_plots_dir)
    imdb_test.evaluate_pose_add(config,
                                all_poses_est,
                                all_poses_gt,
                                output_dir=pose_add_plots_dir)
    pose_arp2d_plots_dir = os.path.join(imdb_test.result_path, "arp_2d_plots")
    mkdir_p(pose_arp2d_plots_dir)
    imdb_test.evaluate_pose_arp_2d(config,
                                   all_poses_est,
                                   all_poses_gt,
                                   output_dir=pose_arp2d_plots_dir)

    logger.info("using {} seconds in total".format(time.time() - t_start))
        q *= -1
    # print('norm of q: ', LA.norm(q))
    q = q / LA.norm(q)
    # print('norm of q: ', LA.norm(q))
    return q



if __name__ == "__main__":
    big_classes = sel_classes
    classes = ['024_bowl', '036_wood_block',
                       '051_large_clamp', '052_extra_large_clamp', '061_foam_brick']

    model_folder = './data/LOV/models'
    print('init render machine...')
    render_machine = Render_Py(model_folder, big_classes, K, width, height, zNear, zFar)
    for cls_idx, cls_name in enumerate(big_classes):
        if cls_name in classes:
            continue
        print(cls_name)
        with open('./data/render_v5/image_set/train_{}.txt'.format(cls_name), 'r') as f:
            real_indices = [line.strip().split()[0] for line in f.readlines()]

        img_indices = []
        for i in [0, 100]:
            img_indices.append(real_indices[i])

        def rotate(angle, rot_axis, pose_gt, p_center=np.array([0,0,0])):
            rot_sym_q = angle_axis_to_quat(angle, rot_axis)
            rot_sym_m = quat2mat(rot_sym_q)