Пример #1
0
import os
import six
import yaml
import copy
import numpy as np
from lib.utils.collections import AttrDict
from lib.utils.misc import get_run_name
from ast import literal_eval

__C = AttrDict()
# Consumers can get config by:
cfg = __C

# Root directory of project
__C.ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# ---------------------------------------------------------------------------- #
# Data configurations
# ---------------------------------------------------------------------------- #
__C.DATASET = AttrDict()
__C.DATASET.NAME = 'nyu'
__C.DATASET.RGB_PIXEL_MEANS = (0.485, 0.456, 0.406)  # (102.9801, 115.9465, 122.7717)
__C.DATASET.RGB_PIXEL_VARS = (0.229, 0.224, 0.225)  # (1, 1, 1)
# Scale the depth map
__C.DATASET.DEPTH_SCALE = 10.0
__C.DATASET.CROP_SIZE = (385, 385)  # (height, width)

# Minimum depth after data augmentation
__C.DATASET.DEPTH_MIN = 0.001
# Maximum depth
Пример #2
0
__C.BBOX_XFORM_CLIP = np.log(1000. / 16.)

# Pixel mean values (BGR order) as a (1, 1, 3) array
# We use the same pixel mean for all networks even though it's not exactly what
# they were trained with
# "Fun" fact: the history of where these values comes from is lost (From Detectron lol)
__C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])

# For reproducibility
__C.RNG_SEED = 3

# A small number that's used many times
__C.EPS = 1e-14

# Root directory of project
__C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..'))

# Output basedir
__C.OUTPUT_DIR = 'Outputs'

# Name (or path to) the matlab executable
__C.MATLAB = 'matlab'

# Dump detection visualizations
__C.VIS = False

# Score threshold for visualization
__C.VIS_TH = 0.9

# Expected results should take the form of a list of expectations, each
# specified by four elements (dataset, task, metric, expected value). For