Пример #1
0
    def forward(self, input):
        if du.get_local_size() == 1 or not self.training:
            return super().forward(input)

        assert input.shape[0] > 0, "SyncBatchNorm does not support empty inputs"
        C = input.shape[1]
        mean = torch.mean(input, dim=[0, 2, 3, 4])
        meansqr = torch.mean(input * input, dim=[0, 2, 3, 4])

        vec = torch.cat([mean, meansqr], dim=0)
        vec = GroupGather.apply(vec, self.num_sync_devices, self.num_groups) * (
            1.0 / self.num_sync_devices
        )

        mean, meansqr = torch.split(vec, C)
        var = meansqr - mean * mean
        self.running_mean += self.momentum * (mean.detach() - self.running_mean)
        self.running_var += self.momentum * (var.detach() - self.running_var)

        invstd = torch.rsqrt(var + self.eps)
        scale = self.weight * invstd
        bias = self.bias - mean * scale
        scale = scale.reshape(1, -1, 1, 1, 1)
        bias = bias.reshape(1, -1, 1, 1, 1)
        return input * scale + bias
Пример #2
0
    def backward(ctx, grad_output):
        """
        Perform backwarding, gathering the gradients across different process/ GPU
        group.
        """
        grad_output_list = [
            torch.zeros_like(grad_output) for k in range(du.get_local_size())
        ]
        dist.all_gather(
            grad_output_list,
            grad_output,
            async_op=False,
            group=du._LOCAL_PROCESS_GROUP,
        )

        grads = torch.stack(grad_output_list, dim=0)
        if ctx.num_groups > 1:
            rank = du.get_local_rank()
            group_idx = rank // ctx.num_sync_devices
            grads = grads[
                group_idx
                * ctx.num_sync_devices : (group_idx + 1)
                * ctx.num_sync_devices
            ]
        grads = torch.sum(grads, dim=0)
        return grads, None, None
Пример #3
0
    def forward(ctx, input, num_sync_devices, num_groups):
        """
        Perform forwarding, gathering the stats across different process/ GPU
        group.
        """
        ctx.num_sync_devices = num_sync_devices
        ctx.num_groups = num_groups

        input_list = [
            torch.zeros_like(input) for k in range(du.get_local_size())
        ]
        dist.all_gather(
            input_list, input, async_op=False, group=du._LOCAL_PROCESS_GROUP
        )

        inputs = torch.stack(input_list, dim=0)
        if num_groups > 1:
            rank = du.get_local_rank()
            group_idx = rank // num_sync_devices
            inputs = inputs[
                group_idx
                * num_sync_devices : (group_idx + 1)
                * num_sync_devices
            ]
        inputs = torch.sum(inputs, dim=0)
        return inputs
Пример #4
0
 def __init__(self, num_sync_devices, **args):
     """
     Naive version of Synchronized 3D BatchNorm.
     Args:
         num_sync_devices (int): number of device to sync.
         args (list): other arguments.
     """
     self.num_sync_devices = num_sync_devices
     if self.num_sync_devices > 0:
         assert du.get_local_size() % self.num_sync_devices == 0, (
             du.get_local_size(),
             self.num_sync_devices,
         )
         self.num_groups = du.get_local_size() // self.num_sync_devices
     else:
         self.num_sync_devices = du.get_local_size()
         self.num_groups = 1
     super(NaiveSyncBatchNorm3d, self).__init__(**args)