batch_size=opt.batch_size, shuffle=True, num_workers=opt.workers, drop_last=True) # ========================================================== # # ================CREATE NETWORK AND OPTIMIZER============== # net = UNet(use_occ=opt.use_occ) net.apply(kaiming_init) weights_normal_init(net.output_layer, 0.001) net.cuda() optimizer = optim.Adam(net.parameters(), lr=opt.lr) if opt.resume: start_epoch = load_checkpoint(net, optimizer, opt.checkpoint) + 1 else: start_epoch = 1 gamma = create_gamma_matrix(480, 640, 600, 600) gamma = torch.from_numpy(gamma).float().cuda() # ========================================================== # # =================== DEFINE TRAIN ========================= # def train(data_loader, net, optimizer): net.train() end = time.time() for i, data in enumerate(data_loader): # load data and label
'rb')) ours = np.array(ours) * 10 ours = ours[:, eigen_crop[0]:eigen_crop[1], eigen_crop[2]:eigen_crop[3]] return ours # ========================================================== # # ================CREATE NETWORK AND OPTIMIZER============== # net = UNet(use_occ=opt.use_occ, no_contour=opt.no_contour, only_contour=opt.only_contour, use_aux=(opt.use_normal or opt.use_img)) optimizer = optim.Adam(net.parameters(), lr=opt.lr) load_checkpoint(net, optimizer, opt.checkpoint) net.cuda() net.eval() # ========================================================== # # load in occlusion list occ_list = sorted( [name for name in os.listdir(opt.occ_dir) if name.endswith(".npy")]) # load in normal list normal_list = sorted([ name for name in os.listdir(opt.data_dir) if name.endswith("-normal.png") ]) # load in rgb list img_list = sorted(