def __init__(self,
                 mode,
                 dataset_path='.././datasets',
                 split_idx=150,
                 crop_dim=(512, 512),
                 samples=100,
                 classes=7,
                 save=True):
        """
        :param mode: 'train','val'
        :param image_paths: image dataset paths
        :param label_paths: label dataset paths
        :param crop_dim: 2 element tuple to decide crop values
        :param samples: number of sub-grids to create(patches of the input img)
        """
        image_paths = sorted(
            glob.glob(
                dataset_path +
                "/MICCAI_2019_pathology_challenge/Train Imgs/Train Imgs/*.jpg")
        )
        label_paths = sorted(
            glob.glob(dataset_path +
                      "/MICCAI_2019_pathology_challenge/Labels/*.png"))

        # TODO problem with random shuffle in val and train
        # TODo cope with 3d affine and full volume for better generalization
        image_paths, label_paths = utils.shuffle_lists(image_paths,
                                                       label_paths)
        self.full_volume = None
        self.affine = None

        self.slices = 244  # dataset instances
        self.mode = mode
        self.crop_dim = crop_dim
        self.sample_list = []
        self.samples = samples
        self.save = save
        self.root = dataset_path
        self.per_image_sample = int(self.samples / self.slices)
        if self.per_image_sample < 1:
            self.per_image_sample = 1

        print("per image sampleeeeee", self.per_image_sample)

        sub_grid = '_2dgrid_' + str(crop_dim[0]) + 'x' + str(crop_dim[1])

        if self.save:
            self.sub_vol_path = self.root + '/MICCAI_2019_pathology_challenge/generated/' + mode + sub_grid + '/'
            utils.make_dirs(self.sub_vol_path)

        if self.mode == 'train':
            self.list_imgs = image_paths[0:split_idx]
            self.list_labels = label_paths[0:split_idx]
        elif self.mode == 'val':
            self.list_imgs = image_paths[split_idx:]
            self.list_labels = label_paths[split_idx:]

        self.generate_samples()
Пример #2
0
    def __init__(self,
                 mode,
                 dataset_path='./datasets',
                 classes=5,
                 crop_dim=(200, 200, 150),
                 split_idx=260,
                 samples=10,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param split_idx: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/'
        self.testing_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Validation/'
        self.full_vol_dim = (240, 240, 155)  # slice, width, height
        self.crop_size = crop_dim
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.classes = classes

        self.save_name = self.root + '/brats2019/brats2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path,
                                       '*GG/*/*t1.nii.gz')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1.nii.gz')))
        list_IDsT1ce = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1ce.nii.gz')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t2.nii.gz')))
        list_IDsFlair = sorted(
            glob.glob(os.path.join(self.training_path,
                                   '*GG/*/*_flair.nii.gz')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*_seg.nii.gz')))
        list_IDsT1, list_IDsT1ce, list_IDsT2, list_IDsFlair, labels = utils.shuffle_lists(
            list_IDsT1,
            list_IDsT1ce,
            list_IDsT2,
            list_IDsFlair,
            labels,
            seed=17)
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            print('Brats2019, Total data:', len(list_IDsT1))
            list_IDsT1 = list_IDsT1[:split_idx]
            list_IDsT1ce = list_IDsT1ce[:split_idx]
            list_IDsT2 = list_IDsT2[:split_idx]
            list_IDsFlair = list_IDsFlair[:split_idx]
            labels = labels[:split_idx]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_idx:]
            list_IDsT1ce = list_IDsT1ce[split_idx:]
            list_IDsT2 = list_IDsT2[split_idx:]
            list_IDsFlair = list_IDsFlair[split_idx:]
            labels = labels[split_idx:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path)
        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t1.nii.gz')))
            self.list_IDsT1ce = sorted(
                glob.glob(os.path.join(self.testing_path,
                                       '*GG/*/*t1ce.nii.gz')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t2.nii.gz')))
            self.list_IDsFlair = sorted(
                glob.glob(
                    os.path.join(self.testing_path, '*GG/*/*_flair.nii.gz')))
            self.labels = None
            # Todo inference code here

        utils.save_list(self.save_name, self.list)
Пример #3
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='./datasets',
                 classes=4,
                 crop_dim=(100, 100, 100),
                 split_idx=204,
                 samples=10,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param split_idx: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/train_generated'
        self.testing_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Validation/'
        self.full_vol_dim = (128, 128, 128)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.classes = classes
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        self.save_name = self.root + '/brats2019/brats2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(
                    os.path.join(self.training_path,
                                 '***_imgs/***_imgs_t1.npy')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(
                os.path.join(self.training_path, '***_imgs/***_imgs_t1.npy')))
        list_IDsT1ce = sorted(
            glob.glob(
                os.path.join(self.training_path,
                             '***_imgs/***_imgs_t1gd.npy')))
        list_IDsT2 = sorted(
            glob.glob(
                os.path.join(self.training_path, '***_imgs/***_imgs_t2.npy')))
        list_IDsFlair = sorted(
            glob.glob(
                os.path.join(self.training_path,
                             '***_imgs/***_imgs_flair.npy')))
        labels = sorted(
            glob.glob(
                os.path.join(self.training_path, '***_seg/***_seg_label.npy')))
        list_IDsT1, list_IDsT1ce, list_IDsT2, list_IDsFlair, labels = utils.shuffle_lists(
            list_IDsT1,
            list_IDsT1ce,
            list_IDsT2,
            list_IDsFlair,
            labels,
            seed=17)
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            print('Brats2019, Total data:', len(list_IDsT1))
            list_IDsT1 = list_IDsT1[:split_idx]
            list_IDsT1ce = list_IDsT1ce[:split_idx]
            list_IDsT2 = list_IDsT2[:split_idx]
            list_IDsFlair = list_IDsFlair[:split_idx]
            labels = labels[:split_idx]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_idx:]
            list_IDsT1ce = list_IDsT1ce[split_idx:]
            list_IDsT2 = list_IDsT2[split_idx:]
            list_IDsFlair = list_IDsFlair[split_idx:]
            labels = labels[split_idx:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)
        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t1.nii.gz')))
            self.list_IDsT1ce = sorted(
                glob.glob(os.path.join(self.testing_path,
                                       '*GG/*/*t1ce.nii.gz')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t2.nii.gz')))
            self.list_IDsFlair = sorted(
                glob.glob(
                    os.path.join(self.testing_path, '*GG/*/*_flair.nii.gz')))
            self.labels = None
            # Todo inference code here

        utils.save_list(self.save_name, self.list)