'samples': [samples[i]] }] blob = get_next_mini_batch(db) blob = {'data': blob['data']} net.blobs['data'].reshape(*blob['data'].shape) out = net.forward(**blob)['cls_prob'] scores[i] = out[1] if __name__ == '__main__': caffe.set_mode_gpu() caffe.set_device(1) # get the deploy solver and net with pre-trained caffe model train = os.path.join('model', 'deploy_solver.prototxt') test = os.path.join('model', 'deploy_test.prototxt') weights = os.path.join('model', 'MDNet_iter_800000.caffemodel') solver, net = get_solver_net(train, test, weights) # get the Evaluator dtype = 'VOT' dbpath = os.path.join('data', 'vot2014') gtpath = dbpath vdbc = VDBC(dbtype=dtype, dbpath=dbpath, gtpath=gtpath, flush=True) evl = Evaluator(vdbc) evl.set_video(1) evaluate(evl, solver, net)
if score < threshold: finetune(solver, frame_samples, short_term) elif term % 10 == 0: finetune(solver, frame_samples, long_term) evl.report(box.reshape((4, ))) gt = box.reshape((4, )) if VISUAL: ground_truth = evl.get_ground_truth() vis_detection(im_path, ground_truth, gt) im_path = evl.next_frame() if __name__ == '__main__': solver, net = get_solver_net(train, test, weights) # get the Evaluator dtype = 'VOT' dbpath = os.path.join('data', 'vot2014') gtpath = dbpath vdbc = VDBC(dbtype=dtype, dbpath=dbpath, gtpath=gtpath, flush=True) evl = Evaluator(vdbc) video_num = evl.get_video_num() print 'Total video sequences: {}.'.format(video_num) for i in range(video_num): evaluate(evl, solver, net)
plt.gca().add_patch( plt.Rectangle((box[0], box[1]), box[2], box[3], fill=False, edgecolor='blue', linewidth=1.5)) plt.show() if __name__ == '__main__': IM_PER_FRAME = 256 dtype = 'VOT' dbpath = os.path.join('data', 'VOT') gtpath = dbpath vdbc = VDBC(dbtype=dtype, dbpath=dbpath, gtpath=gtpath, flush=True) evl = Evaluator(vdbc) evl.set_video(3) im_path, gt = evl.init_frame() im = cv2.imread(im_path) frame_samples = mdnet_sample(im, gt, PARAMS, IM_PER_FRAME, 'TEST') #frame_samples = uniform_sample(im ,gt, PARAMS, IM_PER_FRAME, 'TEST') bboxes = [sample['box'] for sample in frame_samples] vis_detection(im_path, gt, bboxes) #print type(bboxes)
print 'mAP: {}.'.format(evl.get_mAP()) record.add_record(sample_num=sample_num, frame_num=term, mAP=evl.get_mAP(), total_time=total_timer.diff, finetune_iter=finetune_iter_) record._save_json() if __name__ == '__main__': while IMS_PER_FRAME > 20: solver, net = get_solver_net(train, test, weights) # get the Evaluator dtype = 'VOT' dbpath = os.path.join('data', 'VOT') gtpath = dbpath vdbc = VDBC(dbtype=dtype, dbpath=dbpath, gtpath=gtpath, flush=True) evl = Evaluator(vdbc) video_num = evl.get_video_num() print 'Total video sequences: {}.'.format(video_num) # for i in range(video_num): # evaluate(evl, solver, net) evl.set_video(19) evaluate(evl, solver, net, IMS_PER_FRAME) IMS_PER_FRAME -= 5