def train_model(self, producer=None, sess=None, max_iters=None, restore=False): iterator = producer.make_one_shot_iterator() next_element = iterator.get_next() timer = Timer() wrong = 0 for _ in range(1): while True: try: timer.tic() img, corner_data, img_info, reize_info, segmentation_mask = sess.run(next_element) # print(img.shape) # print(corner_data.shape) # print(img_info) # print(reize_info) print(corner_data) print(timer.toc()) break except tf.errors.OutOfRangeError: break except: # print(e) wrong += 1 print('get batch error') break print(wrong)
def fetch_sync(pid): logging.info(f"Sync fetch started: #{pid}") timer = Timer() response = request.urlopen(URL) datetime_hdr = response.getheader("Date") logging.info( f"Sync fetch #{pid}: {datetime_hdr}, took: {timer.passed():.2f} seconds" ) return datetime_hdr
def run(self): for act in self.actions: try: module = None act = self.actions[act] act = act[0] actionName = act['actionName'] module = __import__('actions') action = getattr(module,actionName)() Timer(act['time'],action.run,act['args'],act['loop']).run() except e: print e
async def fetch_a_sync(pid): logging.info(f"A-sync fetch started: #{pid}") timer = Timer() response = await aiohttp_fetch(URL) datetime_hdr = response.headers.get("Date") logging.info( f"A-sync fetch #{pid}: {datetime_hdr}, took: {timer.passed():.2f} seconds" ) response.close() return datetime_hdr
async def fetch_a_sync(pid): timer = Timer() sleepy_time = random.randint(2, 5) logging.error(f"START 1st completed fetch " f"{pid}, sleep {sleepy_time} secs.") await asyncio.sleep(sleepy_time) response = await aiohttp_fetch(URL) datetime_hdr = response.headers.get("Date") response.close() logging.error(f"FIN 1st Completed fetch {pid} | " f"{datetime_hdr}, took {timer.passed():.2f}")
async def ask_question(self): """ Posts a random question from the pool to the channel and sets the timer """ try: selected_question = random.choice(list(self._questions.items()))[0] except IndexError: await self.say( 'Δεν υπάρχουν άλλες ερωτήσεις! Το παιχνίδι ολοκληρώθηκε!') self.end_game() return self._last_question = self._questions.pop(selected_question) await self.say(f"Ερώτηση: {selected_question}") self._question_timer = Timer(self._answer_wait, self.answer_timeout)
async def handle_stopped(self, sender, message): """ Handles the messages when the game is in "stopped" phase """ try: command = re.match(f"^{self._bot.cmd_char}(.*)", message)[1] except TypeError: command = None if command == "start" and self.access_to_control(sender): self._phase = GamePhase.new await self.say( f"Το παιχνίδι γνώσεων ξεκινά σε {self._join_wait} δευτερόλεπτα, " f"για να παίξεις γράψε '{self._bot.cmd_char}join'") Timer(self._join_wait, self.start) elif command == "reload" and self.access_to_control(sender): self.load_data() await self.say( "Η επαναρχικοποίηση ρυθμίσεων και ερωτήσεων ολοκληρώθηκε!")
async def run_sleepers(): timer = Timer() tasks = [fn(timer) for fn in [co_sleeping_a, co_sleeping_b, co_early_bird]] await asyncio.gather(*tasks)
async def fetch_first_completed(): timer = Timer() futures = [fetch_a_sync(pid) for pid in range(1, MAX_CLIENTS + 1)] for idx, future in enumerate(asyncio.as_completed(futures)): result = await future logging.error(f"PROCESS 1st completed fetch took {timer.passed()}")
async def run_fetches_a_sync(): timer = Timer() tasks = [fetch_a_sync(pid) for pid in range(1, MAX_CLIENTS + 1)] await asyncio.wait(tasks) logging.info(f"Fetch A-sync process took: {timer.passed()}")
def run_fetches_sync(): timer = Timer() for pid in range(1, MAX_CLIENTS + 1): fetch_sync(pid) logging.info(f"Fetch sync process took: {timer.passed()}")
import tensorflow as tf import os from lib import get_path from lib import Timer timer = Timer() class TrainWrapper(object): def __init__(self, proj_path, cfg, network=None): self._cfg = cfg self._root_path = proj_path self.net = network # self.output_dir = output_dir pretrained_model_path = os.path.join(self._root_path, cfg.COMMON.DATA_PATH, cfg.TRAIN.PRETRAIN) pretrained_model = os.listdir(pretrained_model_path) assert len(pretrained_model) == 1, 'pretrain model should be one' self._pretrain = os.path.join(pretrained_model_path, pretrained_model[0]) self._ckpt_path = get_path( os.path.join(self._root_path, cfg.COMMON.DATA_PATH, cfg.TRAIN.CKPT)) self._restore = cfg.TRAIN.RESTORE self._max_iter = cfg.TRAIN.MAX_ITER # store the params
def train_model(self, sess): # 根据全部的roidb,获得一个data_layer对象 # data_layer对象是一批一批地传递处理好了的数据 data_layer = get_data_layer(self.roidb, self._cfg) total_loss, model_loss, rpn_cross_entropy, rpn_loss_box = self.net.build_loss( ) # cfg.TRAIN.LEARNING_RATE = 0.00001 lr = tf.Variable(self._cfg.TRAIN.LEARNING_RATE, trainable=False) # TRAIN.SOLVER = 'Momentum' if self._cfg.TRAIN.SOLVER == 'Adam': opt = tf.train.AdamOptimizer(self._cfg.TRAIN.LEARNING_RATE) elif self._cfg.TRAIN.SOLVER == 'RMS': opt = tf.train.RMSPropOptimizer(self._cfg.TRAIN.LEARNING_RATE) else: # lr = tf.Variable(0.0, trainable=False) momentum = self._cfg.TRAIN.MOMENTUM # 0.9 opt = tf.train.MomentumOptimizer(lr, momentum) global_step = tf.Variable(0, trainable=False) with_clip = True if with_clip: tvars = tf.trainable_variables() # 获取所有的可训练参数 # 下面这句话会产生UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. # This may consume a large amount of memory grads, norm = tf.clip_by_global_norm( tf.gradients(total_loss, tvars), 10.0) train_op = opt.apply_gradients(list(zip(grads, tvars)), global_step=global_step) else: train_op = opt.minimize(total_loss, global_step=global_step) # initialize variables sess.run(tf.global_variables_initializer()) restore_iter = 0 # load vgg16 if self.pretrained_model is not None and not self._restore: try: print(('Loading pretrained model ' 'weights from {:s}').format(self.pretrained_model)) # 从预训练模型中导入 self.net.load(self.pretrained_model, sess, True) except: raise 'Check your pretrained model {:s}'.format( self.pretrained_model) # resuming a trainer if self._restore: # restore为True表示训练过程中可能死机了, 现在重新启动训练 try: ckpt = tf.train.get_checkpoint_state(self.checkpoints_dir) print('Restoring from {}...'.format( ckpt.model_checkpoint_path), end=' ') self.saver.restore(sess, ckpt.model_checkpoint_path) stem = os.path.splitext( os.path.basename(ckpt.model_checkpoint_path))[0] restore_iter = int(stem.split('_')[-1]) sess.run(global_step.assign(restore_iter)) print("The starting iter is {:d}".format(restore_iter)) print('done') except: raise 'Check your pretrained {:s}'.format( ckpt.model_checkpoint_path) timer = Timer() loss_list = [total_loss, model_loss, rpn_cross_entropy, rpn_loss_box] train_list = [train_op] for iter in range(restore_iter, self.max_iter): timer.tic() # learning rate if iter != 0 and iter % self._cfg.TRAIN.STEPSIZE == 0: # 每STEPSIZE轮,学习率变为原来的0.1 sess.run(tf.assign(lr, lr.eval() * self._cfg.TRAIN.GAMMA)) print("learning rate at step {} is {}".format(iter, lr)) blobs = data_layer.forward() gt_boxes = blobs['gt_boxes'] if not gt_boxes.shape[0] > 0: print("warning: abandon a picture named {}, because it has " "no gt_boxes".format(blobs['im_name'])) continue feed_dict = { self.net.data: blobs['data'], # 一个形状为[批数,宽,高,通道数]的源图片,命名为“data” self.net.im_info: blobs['im_info'], # 一个三维向量,包含高,宽,缩放比例 self.net.keep_prob: 0.5, self.net.gt_boxes: gt_boxes, # GT_boxes信息,N×8矩阵,每一行为一个gt_box } try: _ = sess.run(fetches=train_list, feed_dict=feed_dict) except NoPositiveError: print("warning: abandon a picture named {}".format( blobs['im_name'])) except: continue _diff_time = timer.toc(average=False) if iter % self._cfg.TRAIN.DISPLAY == 0: total_loss_val, model_loss_val, rpn_loss_cls_val, rpn_loss_box_val \ = sess.run(fetches=loss_list, feed_dict=feed_dict) print( 'iter: %d / %d, total loss: %.4f, model loss: %.4f, rpn_loss_cls: %.4f, ' 'rpn_loss_box: %.4f, lr: %f' % (iter, self.max_iter, total_loss_val, model_loss_val, rpn_loss_cls_val, rpn_loss_box_val, lr.eval())) print('speed: {:.3f}s / iter'.format(_diff_time)) # 每1000次保存一次模型 if (iter + 1 ) % self._cfg.TRAIN.SNAPSHOT_ITERS == 0: # 每一千次保存一下ckeckpoints self.snapshot(sess, iter) # for循環結束以後,記錄下最後一次 self.snapshot(sess, self.max_iter - 1)