def __getBackGround2(self, threshold, preImage): """ Method number 3 to detect the background pixels. The background is detected of the local Image using the given preImage. For this it is calculed the difference between them. @type threshold: int @param preImage: Image used to compare the differences @type preImage: IplImage @return: As first parameter the original image changing the different pixel to black pixel. As Second parameter a IplImage in Gray Scale where the differences are white pixels. After this can be used as mask. """ differenceI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) grayI = cv.CreateImage(cv.GetSize(differenceI), cv.IPL_DEPTH_8U, 1) cv.AbsDiff(self.__image, preImage, differenceI) cv.CvtColor(differenceI, grayI, cv.CV_BGR2GRAY) cv.Threshold(grayI, grayI, threshold, 255, cv.CV_THRESH_BINARY) cv.Smooth(grayI, grayI, cv.CV_MEDIAN, 5) cv.Smooth(grayI, grayI, cv.CV_GAUSSIAN, 5) cv.SetZero(differenceI) cv.Add(self.__image, differenceI, differenceI, grayI) return differenceI, grayI
def __getBackGround(self, threshold, color): """ Method number 1 to detect the background pixels. The background is detected of the local Image using given color. For this it is calculed the difference between local Image and another image set up the given color only. @param threshold: Edge to detect the color background @type threshold: int @param color: Color used to detect background @type color: cvScalar @return: As first parameter the original image changing the different pixel to black pixel. As Second parameter a IplImage in Gray Scale where the differences are white pixels. After this can be used as mask. """ differenceI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) grayI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 1) backgroundI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) cv.Set(backgroundI, color) cv.AbsDiff(self.__image, backgroundI, differenceI) cv.CvtColor(differenceI, grayI, cv.CV_BGR2GRAY) cv.Smooth(grayI, grayI, cv.CV_BLUR, 5) cv.Smooth(grayI, grayI, cv.CV_MEDIAN, 5) cv.Threshold(grayI, grayI, threshold, 255, cv.CV_THRESH_BINARY) cv.SetZero(differenceI) cv.And(self.__image, self.__image, differenceI, grayI) return differenceI, grayI
def __getThresholdImage(self, colorLower, colorUpper): """ Tecnique number 1 to detect the current possition of a specific color in the local image. @param colorLower: This is Low value of the intervale of colour to search. @param colorUpper: This is Hight value of the intervale of colour to search. @return The mask where is found the intervale of chosen colours. """ imgHSV = cv.CreateImage(cv.GetSize(self.__image), 8, 3) cv.CvtColor(self.__image, imgHSV, cv.CV_BGR2HSV) imgResult = cv.CreateImage(cv.GetSize(self.__image), 8, 1) cv.InRangeS(self.__image, colorLower, colorUpper, imgResult) return imgResult
def __getBackGround1(self, threshold, color): """ Method number 2 to detect the background pixels. The background is detected of the local Image using given color. For this it is calculed the difference between local Image and another image set up the given color only in each one channel of color. @param threshold: Edge to detect the color background @type threshold: int @param color: Color used to detect background @type color: cvScalar @return: As first parameter the original image changing the different pixel to black pixel. As Second parameter a IplImage in Gray Scale where the differences are white pixels. After this can be used as mask. """ backgroundI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) cv.Set(backgroundI, color) i0, i1, i2, i3, b0, b1, b2, b3, d0, d1, d2, d3 = tuple([ cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 1) for i in range(12) ]) differenceI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) grayI = cv.CreateImage(cv.GetSize(differenceI), cv.IPL_DEPTH_8U, 1) cv.Split(self.__image, i0, i1, i2, None) cv.Split(backgroundI, b0, b1, b2, None) cv.AbsDiff(i0, b0, d0) cv.AbsDiff(i1, b1, d1) cv.AbsDiff(i2, b2, d2) cv.Threshold(d0, d0, threshold, 255, cv.CV_THRESH_BINARY) cv.Threshold(d1, d1, threshold, 255, cv.CV_THRESH_BINARY) cv.Threshold(d2, d2, threshold, 255, cv.CV_THRESH_BINARY) cv.Merge(d0, d1, d2, None, differenceI) cv.CvtColor(differenceI, grayI, cv.CV_BGR2GRAY) cv.Smooth(grayI, grayI, cv.CV_BLUR, 5) cv.Smooth(grayI, grayI, cv.CV_MEDIAN, 5) cv.Threshold(grayI, grayI, threshold, 255, cv.CV_THRESH_BINARY) cv.SetZero(differenceI) cv.Add(self.__image, differenceI, differenceI, grayI) return differenceI, grayI
def replaceBG(self, colorToReplace, threshold, imageBG, typeBG): """ Replaces the background color with the specified image. So that it is used a amount of threshold to detected the background color and different method to detect it. @param colorToReplace: Color used to detect the Background @type colorToReplace: cvScalar @param threshold: Threshould used as the edge to detect Background. @type threshold: int or IplImage @param imageBG: The image used as new Background @type imageBG: IplImage @param typeBG: Select type of technique to detect the Background @param typeBG: int{0,1,2 or 3} @note: If the used technique is 2, the colorToReplace must be a another IpLImage """ BG = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) if typeBG == 0: BG, grayI = self.__getBackGround(threshold, colorToReplace) elif typeBG == 1: BG, grayI = self.__getBackGround1(threshold, colorToReplace) elif typeBG == 2: BG, grayI = self.__getBackGround2(threshold, colorToReplace[0]) colorToReplace[0] = cv.CloneMat(cv.GetMat(self.__image)) elif typeBG == 3: BG, grayI = self.__getBackGround3(threshold, colorToReplace) cv.Not(grayI, grayI) cv.Add(BG, imageBG, self.__image, grayI)
def __getBackGround3(self, threshold, color): """ Method number 4 to detect the background pixels. Detect the background comparing each pixel of local image with the given color using the threshold. (TOO SLOW) @param threshold: Edge to detect the color background @type threshold: int @param color: Color used to detect background @type color: cvScalar @return: As first parameter the original image changing the different pixel to black pixel. As Second parameter a IplImage in Gray Scale where the differences are white pixels. After this can be used as mask. """ def intervale(id1, id2): if math.fabs(id1 - id2) < threshold: return True return False differenceI = cv.CloneMat(self.__image) size = cv.GetSize(self.__image) grayI = cv.CreateImage(cv.GetSize(differenceI), cv.IPL_DEPTH_8U, 1) cv.SetZero(grayI) for i in range(0, size[0]): for j in range(0, size[1]): pixel = cv.Get2D(self.__image, j, i) if intervale(color[0], pixel[0]) and intervale( color[1], pixel[1]) and intervale(color[2], pixel[2]): cv.Set2D(differenceI, j, i, cv.Scalar(0, 0, 0)) cv.Set2D(grayI, j, i, cv.Scalar(255, 255, 255)) cv.Not(grayI, grayI) return differenceI, grayI
def trackClean(self, objectColor, threshold, thickness, lastPoint2, imgScribble): """ Applies the technique of tracking to local image with the method of to clear. For this it is used the color of the followed object to show the lowed image.(ONLY WEBCAM) @param objectColor: Color of the used object to detect. @type objectColor: cvScalar @param threshold: Threshould detected color of the object. @type threshold: int [0,255] @param thickness: Thickness used to draw. @type thickness: int [0,255] @param lastPoint2: Auxiliar Object @param imgScribble: Image where is stored the tracking way. @type imgScribble: IplImage """ lastPoint = lastPoint2[0] imgThresh = self.__getThresholdImage1(threshold, objectColor) moments = cv.Moments(imgThresh, 1) moment10 = cv.GetSpatialMoment(moments, 1, 0) moment01 = cv.GetSpatialMoment(moments, 0, 1) area = cv.GetCentralMoment(moments, 0, 0) #print area if area == 0: currentPoint = None else: currentPoint = [moment10 / area, moment01 / area] if lastPoint != None and currentPoint != None: cv.Line(imgScribble, (int(currentPoint[0]), int(currentPoint[1])), (int(lastPoint[0]), int(lastPoint[1])), cv.Scalar(250, 250, 250), thickness, cv.CV_AA) mask = cv.CreateImage(cv.GetSize(self.__image), 8, 1) cv.SetZero(mask) cv.CvtColor(imgScribble, mask, cv.CV_BGR2GRAY) blackI = cv.CreateImage(cv.GetSize(self.__image), 8, 3) cv.SetZero(blackI) cv.And(self.__image, self.__image, blackI, mask) self.__image = blackI lastPoint2[0] = currentPoint
def __getThresholdImage1(self, threshold, color): """ Tecnique number 2 to detect the current possition of a specific color in the local image. @param threshold: Allowed threshold to search. @param color: Value of the color to search. @return The mask where is found the intervale of chosen colours. """ differenceI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) grayI = cv.CreateImage(cv.GetSize(differenceI), cv.IPL_DEPTH_8U, 1) backgroundI = cv.CreateImage(cv.GetSize(self.__image), cv.IPL_DEPTH_8U, 3) cv.Set(backgroundI, color) cv.AbsDiff(self.__image, backgroundI, differenceI) cv.CvtColor(differenceI, grayI, cv.CV_BGR2GRAY) cv.Smooth(grayI, grayI, cv.CV_BLUR, 5) cv.Smooth(grayI, grayI, cv.CV_MEDIAN, 5) cv.Threshold(grayI, grayI, threshold, 255, cv.CV_THRESH_BINARY) cv.Not(grayI, grayI) return grayI
def applyFilter(self, typeF): """ Applies filter to the stored image @param typeF: The type the filter to apply @type typeF: FrameFilter {GAUSSIAN,MEDIAN,CANNY} """ if typeF == FrameFilter.GAUSSIAN: cv.Smooth(self.__image, self.__image, cv.CV_GAUSSIAN, 9, 9) elif typeF == FrameFilter.MEDIAN: cv.Smooth(self.__image, self.__image, cv.CV_MEDIAN, 9) elif typeF == FrameFilter.CANNY: frame2 = cv.CreateImage(cv.GetSize(self.__image), 8, 1) cv.CvtColor(self.__image, frame2, cv.CV_BGR2GRAY) cv.Canny(frame2, frame2, 70.0, 140.0, 3) cv.CvtColor(frame2, self.__image, cv.CV_GRAY2BGR)
def trackColor(self, objectColor, threshold, penColor, thickness, lastPoint2, imgScribble, typeS, typeDraw, disable): """ Applies the technique of tracking to local image. For this it is used the color of the followed object to draw the track in the image. It is possible apply two differents techniques to follow the object and also thickness is chosen. (ONLY WEBCAM) @param objectColor: Color of the used object to detect. @type objectColor: cvScalar @param threshold: Threshould detected color of the object. @type threshold: int [0,255] @param penColor: Drawing used color @type penColor: cvScalar @param thickness: Thickness used to draw. @type thickness: int [0,255] @param lastPoint2: Auxiliar Object @param imgScribble: Image where is stored the tracking way. @type imgScribble: IplImage @param typeS: Type of method used to detect the object @type typeS: int[0,1] @param typeDraw: If 1 the transparence is disabled. @param disable: Parameter of pause option """ lastPoint = lastPoint2[0] #penColor = objectColor imgThresh = None if typeS == 1: lowerColor = cv.Scalar(objectColor[0] - threshold, objectColor[1] - threshold, objectColor[2] - threshold) upperColor = cv.Scalar(objectColor[0] + threshold, objectColor[1] + threshold, objectColor[2] + threshold) imgThresh = self.__getThresholdImage(lowerColor, upperColor) elif typeS == 0: imgThresh = self.__getThresholdImage1(threshold, objectColor) moments = cv.Moments(imgThresh, 1) moment10 = cv.GetSpatialMoment(moments, 1, 0) moment01 = cv.GetSpatialMoment(moments, 0, 1) area = cv.GetCentralMoment(moments, 0, 0) #print area if area == 0 or disable == True: currentPoint = None else: currentPoint = [moment10 / area, moment01 / area] if lastPoint != None and currentPoint != None: cv.Line(imgScribble, (int(currentPoint[0]), int(currentPoint[1])), (int(lastPoint[0]), int(lastPoint[1])), penColor, thickness, cv.CV_AA) mask = cv.CreateImage(cv.GetSize(self.__image), 8, 1) cv.CvtColor(imgScribble, mask, cv.CV_BGR2GRAY) cv.Threshold(mask, mask, 20, 255, cv.CV_THRESH_BINARY) cv.Not(mask, mask) blackI = cv.CreateImage(cv.GetSize(self.__image), 8, 3) cv.SetZero(blackI) cv.And(self.__image, self.__image, blackI, mask) if typeDraw == 0: # Totally Transparent cv.Add(self.__image, imgScribble, self.__image) else: # Totally Opaque cv.Add(blackI, imgScribble, self.__image) #self.__image = blackI lastPoint2[0] = currentPoint