Пример #1
0
def test_new_for_partition():
    auxdata = _mk_random(size=(16, 16), dtype="float32")
    buf = AuxBufferWrapper(kind="nav", dtype="float32")
    buf.set_buffer(auxdata)

    dataset = MemoryDataSet(data=_mk_random(size=(16, 16, 16, 16),
                                            dtype="float32"),
                            tileshape=(7, 16, 16),
                            num_partitions=2,
                            sig_dims=2)

    assert auxdata.shape == tuple(dataset.shape.nav)

    roi = _mk_random(size=dataset.shape.nav, dtype="bool")

    for idx, partition in enumerate(dataset.get_partitions()):
        print("partition number", idx)
        new_buf = buf.new_for_partition(partition, roi=roi)
        ps = partition.slice.get(nav_only=True)
        roi_part = roi.reshape(-1)[ps]

        assert np.product(new_buf._data.shape) == roi_part.sum()

        # old buffer stays the same:
        assert np.allclose(buf._data, auxdata.reshape(-1))
        assert buf._data_coords_global
        assert not new_buf._data_coords_global

        # new buffer is sliced to partition and has ROI applied:
        assert new_buf._data.shape[0] <= buf._data.shape[0]
        assert new_buf._data.shape[0] <= partition.shape[0]

        # let's try and manually apply the ROI to `auxdata`:
        assert np.allclose(new_buf._data, auxdata.reshape(-1)[ps][roi_part])
Пример #2
0
    def aux_data(cls, data, kind, extra_shape=(), dtype="float32"):
        """
        Use this method to create auxiliary data. Auxiliary data should
        have a shape like `(dataset.shape.nav, extra_shape)` and on access,
        an appropriate view will be created. For example, if you access
        aux data in `process_frame`, you will get the auxiliary data for
        the current frame you are processing.

        Example
        -------

        We create a UDF to demonstrate the behavior:

        >>> class MyUDF(UDF):
        ...     def get_result_buffers(self):
        ...         # Result buffer for debug output
        ...         return {'aux_dump': self.buffer(kind='nav', dtype='object')}
        ...
        ...     def process_frame(self, frame):
        ...         # Extract value of aux data for demonstration
        ...         self.results.aux_dump[:] = str(self.params.aux_data[:])
        ...
        >>> # for each frame, provide three values from a sequential series:
        >>> aux1 = MyUDF.aux_data(
        ...     data=np.arange(np.prod(dataset.shape.nav) * 3, dtype=np.float32),
        ...     kind="nav", extra_shape=(3,), dtype="float32"
        ... )
        >>> udf = MyUDF(aux_data=aux1)
        >>> res = ctx.run_udf(dataset=dataset, udf=udf)

        process_frame for frame (0, 7) received a view of aux_data with values [21., 22., 23.]:

        >>> res['aux_dump'].data[0, 7]
        '[21. 22. 23.]'
        """
        buf = AuxBufferWrapper(kind, extra_shape, dtype)
        buf.set_buffer(data)
        return buf