Пример #1
0
    'mlp_decomp': mlp_decomp_model,
    'mlp_prune': mlp_prune_model,
    'sparse_mlp': sparse_mlp_model,
    'debug_sparse_mlp': debug_sparse_mlp_model,
    'debug_sparse_mlp_decomposition': debug_sparse_mlp_decomposition_model,
    'debug_sparse_mlp_prune': debug_sparse_mlp_prune_model,
    # Add more model_type functions here.
}

if __name__ == '__main__':
    # it's hard to init flags correctly... so here it is
    sys.argv.append('--caffe2_keep_on_shrink')

    # FbcodeArgumentParser calls initFacebook which is necessary for NNLoader
    # initialization
    parser = pyinit.FbcodeArgumentParser(description='Ads NN trainer')

    # arguments starting with single '-' are compatible with Lua
    parser.add_argument("-batchSize",
                        type=int,
                        default=100,
                        help="The batch size of benchmark data.")
    parser.add_argument("-loaderConfig",
                        type=str,
                        help="Json file with NNLoader's config. If empty some "
                        "fake data is used")
    parser.add_argument("-meta", type=str, help="Meta file (deprecated)")
    parser.add_argument("-hidden",
                        type=str,
                        help="A dash-separated string specifying the "
                        "model dimensions without the output layer.")
Пример #2
0
MODEL_TYPE_FUNCTIONS = {
    'AlexNet': AlexNet,
    'AlexNet_Prune': AlexNet_Prune,
    'VGG': VGG,
    'ResNet-110': ResNet110,
    'ResNet-20': ResNet20
}

if __name__ == '__main__':
    # it's hard to init flags correctly... so here it is
    sys.argv.append('--caffe2_keep_on_shrink')

    # FbcodeArgumentParser calls initFacebook which is necessary for NNLoader
    # initialization
    parser = pyinit.FbcodeArgumentParser(description='cifar-10 Tutorial')

    # arguments starting with single '-' are compatible with Lua
    parser.add_argument("--model", type=str, default='AlexNet',
                        choices=MODEL_TYPE_FUNCTIONS.keys(),
                        help="The batch size of benchmark data.")
    parser.add_argument("--prune_thres", type=float, default=0.0001,
                        help="Pruning threshold for FC layers.")
    parser.add_argument("--comp_lb", type=float, default=0.02,
                        help="Compression Lower Bound for FC layers.")
    parser.add_argument("--gpu", default=False,
                        help="Whether to run on gpu", type=bool)
    parser.add_argument("--train_input_path", type=str,
                        default=None,
                        required=True,
                        help="Path to the database for training data")