Пример #1
0
def mpf_ellipe(x, prec, rnd=round_fast):
    # http://functions.wolfram.com/EllipticIntegrals/
    # EllipticK/20/01/0001/
    # E = (1-m)*(K'(m)*2*m + K(m))
    sign, man, exp, bc = x
    if not man:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return finf
        if x == fnan:
            return x
        if x == finf:
            raise ComplexResult
    if x == fone:
        return fone
    wp = prec+20
    mag = exp+bc
    if mag < -wp:
        return mpf_shift(mpf_pi(prec, rnd), -1)
    # Compute a finite difference for K'
    p = max(mag, 0) - wp
    h = mpf_shift(fone, p)
    K = mpf_ellipk(x, 2*wp)
    Kh = mpf_ellipk(mpf_sub(x, h), 2*wp)
    Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
    t = mpf_sub(fone, x)
    b = mpf_mul(Kdiff, mpf_shift(x,1), wp)
    return mpf_mul(t, mpf_add(K, b), prec, rnd)
Пример #2
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc+exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    flag_nr = True
    if prec < 1000 or exp+bc < -13:
        flag_nr = False
    else:
        ebc = exp + bc
        if ebc < -13:
            flag_nr = False
        elif ebc < -3:
            if prec < 3000:
                flag_nr = False
    if not flag_nr:
        # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
        wp = prec + 15
        a = mpf_mul(x, x)
        b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
        c = mpf_div(x, b, wp)
        return mpf_shift(mpf_atan(c, prec, rnd), 1)
    # use Newton's method
    extra = 10
    extra_p = 10
    prec2 = prec + extra
    r = math.asin(to_float(x))
    r = from_float(r, 50, rnd)
    for p in giant_steps(50, prec2):
        wp = p + extra_p
        c, s = cos_sin(r, wp, rnd)
        tmp = mpf_sub(x, s, wp, rnd)
        tmp = mpf_div(tmp, c, wp, rnd)
        r = mpf_add(r, tmp, wp, rnd)
    sign, man, exp, bc = r
    return normalize(sign, man, exp, bc, prec, rnd)
Пример #3
0
def mpf_psi0(x, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a real argument.
    """
    sign, man, exp, bc = x
    wp = prec + 10
    if not man:
        if x == finf:
            return x
        if x == fninf or x == fnan:
            return fnan
    if x == fzero or (exp >= 0 and sign):
        raise ValueError("polygamma pole")
    # Reflection formula
    if sign and exp + bc > 3:
        c, s = mpf_cos_sin_pi(x, wp)
        q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp)
        p = mpf_psi0(mpf_sub(fone, x, wp), wp)
        return mpf_sub(p, q, prec, rnd)
    # The logarithmic term is accurate enough
    if (not sign) and bc + exp > wp:
        return mpf_log(mpf_sub(x, fone, wp), prec, rnd)
    # Initial recurrence to obtain a large enough x
    m = to_int(x)
    n = int(0.11 * wp) + 2
    s = MP_ZERO
    x = to_fixed(x, wp)
    one = MP_ONE << wp
    if m < n:
        for k in xrange(m, n):
            s -= (one << wp) // x
            x += one
    x -= one
    # Logarithmic term
    s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp)
    # Endpoint term in Euler-Maclaurin expansion
    s += (one << wp) // (2 * x)
    # Euler-Maclaurin remainder sum
    x2 = (x * x) >> wp
    t = one
    prev = 0
    k = 1
    while 1:
        t = (t * x2) >> wp
        bsign, bman, bexp, bbc = mpf_bernoulli(2 * k, wp)
        offset = bexp + 2 * wp
        if offset >= 0:
            term = (bman << offset) // (t * (2 * k))
        else:
            term = (bman >> (-offset)) // (t * (2 * k))
        if k & 1:
            s -= term
        else:
            s += term
        if k > 2 and term >= prev:
            break
        prev = term
        k += 1
    return from_man_exp(s, -wp, wp, rnd)
Пример #4
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc+exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    flag_nr = True
    if prec < 1000 or exp+bc < -13:
        flag_nr = False
    else:
        ebc = exp + bc
        if ebc < -13:
            flag_nr = False
        elif ebc < -3:
            if prec < 3000:
                flag_nr = False
    if not flag_nr:
        # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
        wp = prec + 15
        a = mpf_mul(x, x)
        b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
        c = mpf_div(x, b, wp)
        return mpf_shift(mpf_atan(c, prec, rnd), 1)
    # use Newton's method
    extra = 10
    extra_p = 10
    prec2 = prec + extra
    r = math.asin(to_float(x))
    r = from_float(r, 50, rnd)
    for p in giant_steps(50, prec2):
        wp = p + extra_p
        c, s = cos_sin(r, wp, rnd)
        tmp = mpf_sub(x, s, wp, rnd)
        tmp = mpf_div(tmp, c, wp, rnd)
        r = mpf_add(r, tmp, wp, rnd)
    sign, man, exp, bc = r
    return normalize(sign, man, exp, bc, prec, rnd)
Пример #5
0
def mpf_ellipe(x, prec, rnd=round_fast):
    # http://functions.wolfram.com/EllipticIntegrals/
    # EllipticK/20/01/0001/
    # E = (1-m)*(K'(m)*2*m + K(m))
    sign, man, exp, bc = x
    if not man:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return finf
        if x == fnan:
            return x
        if x == finf:
            raise ComplexResult
    if x == fone:
        return fone
    wp = prec + 20
    mag = exp + bc
    if mag < -wp:
        return mpf_shift(mpf_pi(prec, rnd), -1)
    # Compute a finite difference for K'
    p = max(mag, 0) - wp
    h = mpf_shift(fone, p)
    K = mpf_ellipk(x, 2 * wp)
    Kh = mpf_ellipk(mpf_sub(x, h), 2 * wp)
    Kdiff = mpf_shift(mpf_sub(K, Kh), -p)
    t = mpf_sub(fone, x)
    b = mpf_mul(Kdiff, mpf_shift(x, 1), wp)
    return mpf_mul(t, mpf_add(K, b), prec, rnd)
Пример #6
0
def mpi_sub(s, t, prec):
    sa, sb = s
    ta, tb = t
    a = mpf_sub(sa, tb, prec, round_floor)
    b = mpf_sub(sb, ta, prec, round_ceiling)
    if a == fnan: a = fninf
    if b == fnan: b = finf
    return a, b
Пример #7
0
def mpi_sub(s, t, prec):
    sa, sb = s
    ta, tb = t
    a = mpf_sub(sa, tb, prec, round_floor)
    b = mpf_sub(sb, ta, prec, round_ceiling)
    if a == fnan: a = fninf
    if b == fnan: b = finf
    return a, b
Пример #8
0
def mpf_psi0(x, prec, rnd=round_fast):
    """
    Computation of the digamma function (psi function of order 0)
    of a real argument.
    """
    sign, man, exp, bc = x
    wp = prec + 10
    if not man:
        if x == finf: return x
        if x == fninf or x == fnan: return fnan
    if x == fzero or (exp >= 0 and sign):
        raise ValueError("polygamma pole")
    # Reflection formula
    if sign and exp + bc > 3:
        c, s = mpf_cos_sin_pi(x, wp)
        q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp)
        p = mpf_psi0(mpf_sub(fone, x, wp), wp)
        return mpf_sub(p, q, prec, rnd)
    # The logarithmic term is accurate enough
    if (not sign) and bc + exp > wp:
        return mpf_log(mpf_sub(x, fone, wp), prec, rnd)
    # Initial recurrence to obtain a large enough x
    m = to_int(x)
    n = int(0.11 * wp) + 2
    s = MP_ZERO
    x = to_fixed(x, wp)
    one = MP_ONE << wp
    if m < n:
        for k in xrange(m, n):
            s -= (one << wp) // x
            x += one
    x -= one
    # Logarithmic term
    s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp)
    # Endpoint term in Euler-Maclaurin expansion
    s += (one << wp) // (2 * x)
    # Euler-Maclaurin remainder sum
    x2 = (x * x) >> wp
    t = one
    prev = 0
    k = 1
    while 1:
        t = (t * x2) >> wp
        bsign, bman, bexp, bbc = mpf_bernoulli(2 * k, wp)
        offset = (bexp + 2 * wp)
        if offset >= 0: term = (bman << offset) // (t * (2 * k))
        else: term = (bman >> (-offset)) // (t * (2 * k))
        if k & 1: s -= term
        else: s += term
        if k > 2 and term >= prev:
            break
        prev = term
        k += 1
    return from_man_exp(s, -wp, wp, rnd)
Пример #9
0
def mpf_zeta(s, prec, rnd=round_fast):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp, 2) + 2)):
        if rnd in (round_up, round_ceiling):
            return mpf_add(fone, mpf_shift(fone, -wp - 10), prec, rnd)
        return fone
    elif exp >= 0:
        return mpf_zeta_int(to_int(s), prec, rnd)
    # Less than 0.5?
    if sign or (exp + bc) < 0:
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10 * wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp + bc)
        pi = mpf_pi(wp + wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a, mpf_mul(b, mpf_mul(c, d, wp), wp), prec, rnd)
    t = MP_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MP_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf * log_int_fixed(k + 1, wp), -2 * wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
    return mpf_div(t, q, prec, rnd)
Пример #10
0
def mpf_zeta(s, prec, rnd=round_fast):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp,2) + 2)):
        if rnd in (round_up, round_ceiling):
            return mpf_add(fone, mpf_shift(fone,-wp-10), prec, rnd)
        return fone
    elif exp >= 0:
        return mpf_zeta_int(to_int(s), prec, rnd)
    # Less than 0.5?
    if sign or (exp+bc) < 0:
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10*wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp+bc)
        pi = mpf_pi(wp+wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd)
    t = MP_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MP_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf*log_int_fixed(k+1, wp), -2*wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
    return mpf_div(t, q, prec, rnd)
Пример #11
0
def twinprime_fixed(prec):
    def I(n):
        return sum(
            moebius(d) << (n // d) for d in xrange(1, n + 1) if not n % d) // n

    wp = 2 * prec + 30
    res = fone
    primes = [from_rational(1, p, wp) for p in [2, 3, 5, 7]]
    ppowers = [mpf_mul(p, p, wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec + 10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3 * 15 * 35), wp)
    res = mpf_div(res, from_int(4 * 16 * 36), wp)
    return to_fixed(res, prec)
Пример #12
0
def mpc_sqrt(z, prec, rnd=round_fast):
    """Complex square root (principal branch).

    We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where
    r = abs(a+bi), when a+bi is not a negative real number."""
    a, b = z
    if b == fzero:
        if a == fzero:
            return (a, b)
        # When a+bi is a negative real number, we get a real sqrt times i
        if a[0]:
            im = mpf_sqrt(mpf_neg(a), prec, rnd)
            return (fzero, im)
        else:
            re = mpf_sqrt(a, prec, rnd)
            return (re, fzero)
    wp = prec+20
    if not a[0]:                               # case a positive
        t  = mpf_add(mpc_abs((a, b), wp), a, wp)  # t = abs(a+bi) + a
        u = mpf_shift(t, -1)                      # u = t/2
        re = mpf_sqrt(u, prec, rnd)               # re = sqrt(u)
        v = mpf_shift(t, 1)                       # v = 2*t
        w  = mpf_sqrt(v, wp)                      # w = sqrt(v)
        im = mpf_div(b, w, prec, rnd)             # im = b / w
    else:                                      # case a negative
        t = mpf_sub(mpc_abs((a, b), wp), a, wp)   # t = abs(a+bi) - a
        u = mpf_shift(t, -1)                      # u = t/2
        im = mpf_sqrt(u, prec, rnd)               # im = sqrt(u)
        v = mpf_shift(t, 1)                       # v = 2*t
        w  = mpf_sqrt(v, wp)                      # w = sqrt(v)
        re = mpf_div(b, w, prec, rnd)             # re = b/w
        if b[0]:
            re = mpf_neg(re)
            im = mpf_neg(im)
    return re, im
Пример #13
0
def mpc_sqrt(z, prec, rnd=round_fast):
    """Complex square root (principal branch).

    We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where
    r = abs(a+bi), when a+bi is not a negative real number."""
    a, b = z
    if b == fzero:
        if a == fzero:
            return (a, b)
        # When a+bi is a negative real number, we get a real sqrt times i
        if a[0]:
            im = mpf_sqrt(mpf_neg(a), prec, rnd)
            return (fzero, im)
        else:
            re = mpf_sqrt(a, prec, rnd)
            return (re, fzero)
    wp = prec + 20
    if not a[0]:  # case a positive
        t = mpf_add(mpc_abs((a, b), wp), a, wp)  # t = abs(a+bi) + a
        u = mpf_shift(t, -1)  # u = t/2
        re = mpf_sqrt(u, prec, rnd)  # re = sqrt(u)
        v = mpf_shift(t, 1)  # v = 2*t
        w = mpf_sqrt(v, wp)  # w = sqrt(v)
        im = mpf_div(b, w, prec, rnd)  # im = b / w
    else:  # case a negative
        t = mpf_sub(mpc_abs((a, b), wp), a, wp)  # t = abs(a+bi) - a
        u = mpf_shift(t, -1)  # u = t/2
        im = mpf_sqrt(u, prec, rnd)  # im = sqrt(u)
        v = mpf_shift(t, 1)  # v = 2*t
        w = mpf_sqrt(v, wp)  # w = sqrt(v)
        re = mpf_div(b, w, prec, rnd)  # re = b/w
        if b[0]:
            re = mpf_neg(re)
            im = mpf_neg(im)
    return re, im
Пример #14
0
 def __rsub__(s, t):
     prec, rounding = prec_rounding
     if type(t) in int_types:
         return make_mpf(mpf_sub(from_int(t), s._mpf_, prec, rounding))
     t = mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t - s
Пример #15
0
 def __rsub__(s, t):
     prec, rounding = prec_rounding
     if type(t) in int_types:
         return make_mpf(mpf_sub(from_int(t), s._mpf_, prec, rounding))
     t = mpf_convert_lhs(t)
     if t is NotImplemented:
         return t
     return t - s
Пример #16
0
def cosh_sinh(x, prec, rnd=round_fast, tanh=0):
    """Simultaneously compute (cosh(x), sinh(x)) for real x"""
    sign, man, exp, bc = x
    if (not man) and exp:
        if tanh:
            if x == finf: return fone
            if x == fninf: return fnone
            return fnan
        if x == finf: return (finf, finf)
        if x == fninf: return (finf, fninf)
        return fnan, fnan

    if sign:
        man = -man

    mag = exp + bc
    prec2 = prec + 20

    if mag < -3:
        # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1
        if mag < -prec-2:
            if tanh:
                return mpf_perturb(x, 1-sign, prec, rnd)
            cosh = mpf_perturb(fone, 0, prec, rnd)
            sinh = mpf_perturb(x, sign, prec, rnd)
            return cosh, sinh

        # Avoid cancellation when computing sinh
        # TODO: might be faster to use sinh series directly
        prec2 += (-mag) + 4

    # In the general case, we use
    #    cosh(x) = (exp(x) + exp(-x))/2
    #    sinh(x) = (exp(x) - exp(-x))/2
    # and note that the exponential only needs to be computed once.
    ep = mpf_exp(x, prec2)
    em = mpf_div(fone, ep, prec2)
    if tanh:
        ch = mpf_add(ep, em, prec2, rnd)
        sh = mpf_sub(ep, em, prec2, rnd)
        return mpf_div(sh, ch, prec, rnd)
    else:
        ch = mpf_shift(mpf_add(ep, em, prec, rnd), -1)
        sh = mpf_shift(mpf_sub(ep, em, prec, rnd), -1)
        return ch, sh
Пример #17
0
def mpc_square(z, prec, rnd=round_fast):
    # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
    a, b = z
    p = mpf_mul(a,a)
    q = mpf_mul(b,b)
    r = mpf_mul(a,b, prec, rnd)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_shift(r, 1)
    return re, im
Пример #18
0
def mpc_square(z, prec, rnd=round_fast):
    # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b
    a, b = z
    p = mpf_mul(a, a)
    q = mpf_mul(b, b)
    r = mpf_mul(a, b, prec, rnd)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_shift(r, 1)
    return re, im
Пример #19
0
def mpf_gamma(x, prec, rounding=round_fast, p1=1):
    """
    Computes the gamma function of a real floating-point argument.
    With p1=0, computes a factorial instead.
    """
    sign, man, exp, bc = x
    if not man:
        if x == finf:
            return finf
        if x == fninf or x == fnan:
            return fnan
    # More precision is needed for enormous x. TODO:
    # use Stirling's formula + Euler-Maclaurin summation
    size = exp + bc
    if size > 5:
        size = int(size * math.log(size, 2))
    wp = prec + max(0, size) + 15
    if exp >= 0:
        if sign or (p1 and not man):
            raise ValueError("gamma function pole")
        # A direct factorial is fastest
        if exp + bc <= 10:
            return from_int(int_fac((man << exp) - p1), prec, rounding)
    reflect = sign or exp + bc < -1
    if p1:
        # Should be done exactly!
        x = mpf_sub(x, fone, bc - exp + 2)
    # x < 0.25
    if reflect:
        # gamma = pi / (sin(pi*x) * gamma(1-x))
        wp += 15
        pix = mpf_mul(x, mpf_pi(wp), wp)
        t = mpf_sin_pi(x, wp)
        g = mpf_gamma(mpf_sub(fone, x, wp), wp)
        return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_real(x, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    xpa = mpf_add(x, from_int(a), wp)
    logxpa = mpf_log(xpa, wp)
    xph = mpf_add(x, fhalf, wp)
    t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp)
    t = mpf_mul(mpf_exp(t, wp), s, prec, rounding)
    return t
Пример #20
0
def mpf_gamma(x, prec, rounding=round_fast, p1=1):
    """
    Computes the gamma function of a real floating-point argument.
    With p1=0, computes a factorial instead.
    """
    sign, man, exp, bc = x
    if not man:
        if x == finf:
            return finf
        if x == fninf or x == fnan:
            return fnan
    # More precision is needed for enormous x. TODO:
    # use Stirling's formula + Euler-Maclaurin summation
    size = exp + bc
    if size > 5:
        size = int(size * math.log(size,2))
    wp = prec + max(0, size) + 15
    if exp >= 0:
        if sign or (p1 and not man):
            raise ValueError("gamma function pole")
        # A direct factorial is fastest
        if exp + bc <= 10:
            return from_int(ifac((man<<exp)-p1), prec, rounding)
    reflect = sign or exp+bc < -1
    if p1:
        # Should be done exactly!
        x = mpf_sub(x, fone)
    # x < 0.25
    if reflect:
        # gamma = pi / (sin(pi*x) * gamma(1-x))
        wp += 15
        pix = mpf_mul(x, mpf_pi(wp), wp)
        t = mpf_sin_pi(x, wp)
        g = mpf_gamma(mpf_sub(fone, x), wp)
        return mpf_div(pix, mpf_mul(t, g, wp), prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_real(x, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    xpa = mpf_add(x, from_int(a), wp)
    logxpa = mpf_log(xpa, wp)
    xph = mpf_add(x, fhalf, wp)
    t = mpf_sub(mpf_mul(logxpa, xph, wp), xpa, wp)
    t = mpf_mul(mpf_exp(t, wp), s, prec, rounding)
    return t
Пример #21
0
def mpc_div(z, w, prec, rnd=round_fast):
    a, b = z
    c, d = w
    wp = prec + 10
    # mag = c*c + d*d
    mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
    # (a*c+b*d)/mag, (b*c-a*d)/mag
    t = mpf_add(mpf_mul(a, c), mpf_mul(b, d), wp)
    u = mpf_sub(mpf_mul(b, c), mpf_mul(a, d), wp)
    return mpf_div(t, mag, prec, rnd), mpf_div(u, mag, prec, rnd)
Пример #22
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc + exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
    c = mpf_div(x, b, wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)
Пример #23
0
def mpf_asin(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if bc + exp > 0 and x not in (fone, fnone):
        raise ComplexResult("asin(x) is real only for -1 <= x <= 1")
    # asin(x) = 2*atan(x/(1+sqrt(1-x**2)))
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp)
    c = mpf_div(x, b, wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)
Пример #24
0
def mpf_atanh(x, prec, rnd=round_fast):
    # atanh(x) = log((1+x)/(1-x))/2
    sign, man, exp, bc = x
    mag = bc + exp
    if mag > 0:
        raise ComplexResult("atanh(x) is real only for -1 < x < 1")
    wp = prec + 15
    a = mpf_add(x, fone, wp)
    b = mpf_sub(fone, x, wp)
    return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)
Пример #25
0
def mpf_atanh(x, prec, rnd=round_fast):
    # atanh(x) = log((1+x)/(1-x))/2
    sign, man, exp, bc = x
    mag = bc + exp
    if mag > 0:
        raise ComplexResult("atanh(x) is real only for -1 < x < 1")
    wp = prec + 15
    a = mpf_add(x, fone, wp)
    b = mpf_sub(fone, x, wp)
    return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)
Пример #26
0
def mpc_div(z, w, prec, rnd=round_fast):
    a, b = z
    c, d = w
    wp = prec + 10
    # mag = c*c + d*d
    mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp)
    # (a*c+b*d)/mag, (b*c-a*d)/mag
    t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp)
    u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp)
    return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd)
Пример #27
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s + 1, wp), from_int(s - 1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp * 0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE**s)
        t += 1 << max(0, wp - s * 2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp) / (s - 1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp / 2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s * math.log(k, 2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec),
                                wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp / 2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k + 1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp + 1 - s)))
    if (s in zeta_int_cache
            and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp - wp))
    return from_man_exp(t, -wp - wp, prec, rnd)
Пример #28
0
def mpc_gamma(x, prec, rounding=round_fast, p1=1):
    re, im = x
    if im == fzero:
        return mpf_gamma(re, prec, rounding, p1), fzero
    # More precision is needed for enormous x.
    sign, man, exp, bc = re
    isign, iman, iexp, ibc = im
    if re == fzero:
        size = iexp + ibc
    else:
        size = max(exp + bc, iexp + ibc)
    if size > 5:
        size = int(size * math.log(size, 2))
    reflect = sign or (exp + bc < -1)
    wp = prec + max(0, size) + 25
    # Near x = 0 pole (TODO: other poles)
    if p1:
        if size < -prec - 5:
            return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \
                mpf_neg(mpf_euler(2*prec+10)), prec, rounding)
        elif size < -5:
            wp += (-2 * size)
    if p1:
        # Should be done exactly!
        re_orig = re
        re = mpf_sub(re, fone, bc + abs(exp) + 2)
        x = re, im
    if reflect:
        # Reflection formula
        wp += 15
        pi = mpf_pi(wp), fzero
        pix = mpc_mul(x, pi, wp)
        t = mpc_sin_pi(x, wp)
        u = mpc_sub(mpc_one, x, wp)
        g = mpc_gamma(u, wp)
        w = mpc_mul(t, g, wp)
        return mpc_div(pix, w, wp)
    # Extremely close to the real line?
    # XXX: reflection formula
    if iexp + ibc < -wp:
        a = mpf_gamma(re_orig, wp)
        b = mpf_psi0(re_orig, wp)
        gamma_diff = mpf_div(a, b, wp)
        return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec,
                                                   rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_complex(re, im, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    repa = mpf_add(re, from_int(a), wp)
    logxpa = mpc_log((repa, im), wp)
    reph = mpf_add(re, fhalf, wp)
    t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp)
    t = mpc_mul(mpc_exp(t, wp), s, prec, rounding)
    return t
Пример #29
0
def mpc_gamma(x, prec, rounding=round_fast, p1=1):
    re, im = x
    if im == fzero:
        return mpf_gamma(re, prec, rounding, p1), fzero
    # More precision is needed for enormous x.
    sign, man, exp, bc = re
    isign, iman, iexp, ibc = im
    if re == fzero:
        size = iexp+ibc
    else:
        size = max(exp+bc, iexp+ibc)
    if size > 5:
        size = int(size * math.log(size,2))
    reflect = sign or (exp+bc < -1)
    wp = prec + max(0, size) + 25
    # Near x = 0 pole (TODO: other poles)
    if p1:
        if size < -prec-5:
            return mpc_add_mpf(mpc_div(mpc_one, x, 2*prec+10), \
                mpf_neg(mpf_euler(2*prec+10)), prec, rounding)
        elif size < -5:
            wp += (-2*size)
    if p1:
        # Should be done exactly!
        re_orig = re
        re = mpf_sub(re, fone, bc+abs(exp)+2)
        x = re, im
    if reflect:
        # Reflection formula
        wp += 15
        pi = mpf_pi(wp), fzero
        pix = mpc_mul(x, pi, wp)
        t = mpc_sin_pi(x, wp)
        u = mpc_sub(mpc_one, x, wp)
        g = mpc_gamma(u, wp)
        w = mpc_mul(t, g, wp)
        return mpc_div(pix, w, wp)
    # Extremely close to the real line?
    # XXX: reflection formula
    if iexp+ibc < -wp:
        a = mpf_gamma(re_orig, wp)
        b = mpf_psi0(re_orig, wp)
        gamma_diff = mpf_div(a, b, wp)
        return mpf_pos(a, prec, rounding), mpf_mul(gamma_diff, im, prec, rounding)
    sprec, a, c = get_spouge_coefficients(wp)
    s = spouge_sum_complex(re, im, sprec, a, c)
    # gamma = exp(log(x+a)*(x+0.5) - xpa) * s
    repa = mpf_add(re, from_int(a), wp)
    logxpa = mpc_log((repa, im), wp)
    reph = mpf_add(re, fhalf, wp)
    t = mpc_sub(mpc_mul(logxpa, (reph, im), wp), (repa, im), wp)
    t = mpc_mul(mpc_exp(t, wp), s, prec, rounding)
    return t
Пример #30
0
def mpf_erfc(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fone
        if x == finf: return fzero
        if x == fninf: return ftwo
        return fnan
    wp = prec + 20
    mag = bc + exp
    # Preserve full accuracy when exponent grows huge
    wp += max(0, 2 * mag)
    regular_erf = sign or mag < 2
    if regular_erf or not erfc_check_series(x, wp):
        if regular_erf:
            return mpf_sub(fone, mpf_erf(x, prec + 10, negative_rnd[rnd]),
                           prec, rnd)
        # 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation
        n = to_int(x)
        return mpf_sub(fone, mpf_erf(x, prec + int(n**2 * 1.44) + 10), prec,
                       rnd)
    s = term = MP_ONE << wp
    term_prev = 0
    t = (2 * to_fixed(x, wp)**2) >> wp
    k = 1
    while 1:
        term = ((term * (2 * k - 1)) << wp) // t
        if k > 4 and term > term_prev or not term:
            break
        if k & 1:
            s -= term
        else:
            s += term
        term_prev = term
        #print k, to_str(from_man_exp(term, -wp, 50), 10)
        k += 1
    s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp)
    s = from_man_exp(s, -wp, wp)
    z = mpf_exp(mpf_neg(mpf_mul(x, x, wp), wp), wp)
    y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd)
    return y
Пример #31
0
def mpf_zeta_int(s, prec, rnd=round_fast):
    """
    Optimized computation of zeta(s) for an integer s.
    """
    wp = prec + 20
    s = int(s)
    if s in zeta_int_cache and zeta_int_cache[s][0] >= wp:
        return mpf_pos(zeta_int_cache[s][1], prec, rnd)
    if s < 2:
        if s == 1:
            raise ValueError("zeta(1) pole")
        if not s:
            return mpf_neg(fhalf)
        return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd)
    # 2^-s term vanishes?
    if s >= wp:
        return mpf_perturb(fone, 0, prec, rnd)
    # 5^-s term vanishes?
    elif s >= wp*0.431:
        t = one = 1 << wp
        t += 1 << (wp - s)
        t += one // (MPZ_THREE ** s)
        t += 1 << max(0, wp - s*2)
        return from_man_exp(t, -wp, prec, rnd)
    else:
        # Fast enough to sum directly?
        # Even better, we use the Euler product (idea stolen from pari)
        m = (float(wp)/(s-1) + 1)
        if m < 30:
            needed_terms = int(2.0**m + 1)
            if needed_terms < int(wp/2.54 + 5) / 10:
                t = fone
                for k in list_primes(needed_terms):
                    #print k, needed_terms
                    powprec = int(wp - s*math.log(k,2))
                    if powprec < 2:
                        break
                    a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp)
                    t = mpf_mul(t, a, wp)
                return mpf_div(fone, t, wp)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    s = MPZ(s)
    for k in xrange(n):
        t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s
    t = (t << wp) // (-d[n])
    t = (t << wp) // ((1 << wp) - (1 << (wp+1-s)))
    if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache):
        zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp))
    return from_man_exp(t, -wp-wp, prec, rnd)
Пример #32
0
def mpi_from_str_a_b(x, y, percent, prec):
    wp = prec + 20
    xa = from_str(x, wp, round_floor)
    xb = from_str(x, wp, round_ceiling)
    #ya = from_str(y, wp, round_floor)
    y = from_str(y, wp, round_ceiling)
    assert mpf_ge(y, fzero)
    if percent:
        y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
        y = mpf_div(y, from_int(100), wp, round_ceiling)
    a = mpf_sub(xa, y, prec, round_floor)
    b = mpf_add(xb, y, prec, round_ceiling)
    return a, b
Пример #33
0
def mpi_from_str_a_b(x, y, percent, prec):
    wp = prec + 20
    xa = from_str(x, wp, round_floor)
    xb = from_str(x, wp, round_ceiling)
    #ya = from_str(y, wp, round_floor)
    y = from_str(y, wp, round_ceiling)
    assert mpf_ge(y, fzero)
    if percent:
        y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling)
        y = mpf_div(y, from_int(100), wp, round_ceiling)
    a = mpf_sub(xa, y, prec, round_floor)
    b = mpf_add(xb, y, prec, round_ceiling)
    return a, b
Пример #34
0
def mpf_acos(x, prec, rnd=round_fast):
    # acos(x) = 2*atan(sqrt(1-x**2)/(1+x))
    sign, man, exp, bc = x
    if bc + exp > 0:
        if x not in (fone, fnone):
            raise ComplexResult("acos(x) is real only for -1 <= x <= 1")
        if x == fnone:
            return mpf_pi(prec, rnd)
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_sqrt(mpf_sub(fone, a, wp), wp)
    c = mpf_div(b, mpf_add(fone, x, wp), wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)
Пример #35
0
def mpf_acos(x, prec, rnd=round_fast):
    # acos(x) = 2*atan(sqrt(1-x**2)/(1+x))
    sign, man, exp, bc = x
    if bc + exp > 0:
        if x not in (fone, fnone):
            raise ComplexResult("acos(x) is real only for -1 <= x <= 1")
        if x == fnone:
            return mpf_pi(prec, rnd)
    wp = prec + 15
    a = mpf_mul(x, x)
    b = mpf_sqrt(mpf_sub(fone, a, wp), wp)
    c = mpf_div(b, mpf_add(fone, x, wp), wp)
    return mpf_shift(mpf_atan(c, prec, rnd), 1)
Пример #36
0
def mpf_erfc(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fone
        if x == finf: return fzero
        if x == fninf: return ftwo
        return fnan
    wp = prec + 20
    mag = bc+exp
    # Preserve full accuracy when exponent grows huge
    wp += max(0, 2*mag)
    regular_erf = sign or mag < 2
    if regular_erf or not erfc_check_series(x, wp):
        if regular_erf:
            return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd)
        # 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation
        n = to_int(x)+1
        return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd)
    s = term = MPZ_ONE << wp
    term_prev = 0
    t = (2 * to_fixed(x, wp) ** 2) >> wp
    k = 1
    while 1:
        term = ((term * (2*k - 1)) << wp) // t
        if k > 4 and term > term_prev or not term:
            break
        if k & 1:
            s -= term
        else:
            s += term
        term_prev = term
        #print k, to_str(from_man_exp(term, -wp, 50), 10)
        k += 1
    s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp)
    s = from_man_exp(s, -wp, wp)
    z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp)
    y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd)
    return y
Пример #37
0
def exp_newton(x, prec):
    extra = 10
    r = mpf_exp(x, 60)
    start = 50
    prevp = start
    for p in giant_steps(start, prec+extra, 4):
        h = mpf_sub(x, mpf_log(r, p), p)
        h2 = mpf_mul(h, h, p)
        h3 = mpf_mul(h2, h, p)
        h4 = mpf_mul(h2, h2, p)
        t = mpf_add(h, mpf_shift(h2, -1), p)
        t = mpf_add(t, mpf_div(h3, from_int(6, p), p), p)
        t = mpf_add(t, mpf_div(h4, from_int(24, p), p), p)
        t = mpf_mul(r, t, p)
        r = mpf_add(r, t, p)
    return r
Пример #38
0
def mpc_mul(z, w, prec, rnd=round_fast):
    """
    Complex multiplication.

    Returns the real and imaginary part of (a+bi)*(c+di), rounded to
    the specified precision. The rounding mode applies to the real and
    imaginary parts separately.
    """
    a, b = z
    c, d = w
    p = mpf_mul(a, c)
    q = mpf_mul(b, d)
    r = mpf_mul(a, d)
    s = mpf_mul(b, c)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_add(r, s, prec, rnd)
    return re, im
Пример #39
0
def mpc_mul(z, w, prec, rnd=round_fast):
    """
    Complex multiplication.

    Returns the real and imaginary part of (a+bi)*(c+di), rounded to
    the specified precision. The rounding mode applies to the real and
    imaginary parts separately.
    """
    a, b = z
    c, d = w
    p = mpf_mul(a, c)
    q = mpf_mul(b, d)
    r = mpf_mul(a, d)
    s = mpf_mul(b, c)
    re = mpf_sub(p, q, prec, rnd)
    im = mpf_add(r, s, prec, rnd)
    return re, im
Пример #40
0
def mpc_atan(z, prec, rnd=round_fast):
    a, b = z
    # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z))
    # x = 1-I*z = 1 + b - I*a
    # y = 1+I*z = 1 - b + I*a
    wp = prec + 15
    x = mpf_add(fone, b, wp), mpf_neg(a)
    y = mpf_sub(fone, b, wp), a
    l1 = mpc_log(x, wp)
    l2 = mpc_log(y, wp)
    a, b = mpc_sub(l1, l2, prec, rnd)
    # (I/2) * (a+b*I) = (-b/2 + a/2*I)
    v = mpf_neg(mpf_shift(b, -1)), mpf_shift(a, -1)
    # Subtraction at infinity gives correct real part but
    # wrong imaginary part (should be zero)
    if v[1] == fnan and mpc_is_inf(z):
        v = (v[0], fzero)
    return v
Пример #41
0
def mpc_atan(z, prec, rnd=round_fast):
    a, b = z
    # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z))
    # x = 1-I*z = 1 + b - I*a
    # y = 1+I*z = 1 - b + I*a
    wp = prec + 15
    x = mpf_add(fone, b, wp), mpf_neg(a)
    y = mpf_sub(fone, b, wp), a
    l1 = mpc_log(x, wp)
    l2 = mpc_log(y, wp)
    a, b = mpc_sub(l1, l2, prec, rnd)
    # (I/2) * (a+b*I) = (-b/2 + a/2*I)
    v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1)
    # Subtraction at infinity gives correct real part but
    # wrong imaginary part (should be zero)
    if v[1] == fnan and mpc_is_inf(z):
        v = (v[0], fzero)
    return v
Пример #42
0
def mpf_ellipk(x, prec, rnd=round_fast):
    if not x[1]:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return fzero
        if x == fnan:
            return x
    if x == fone:
        return finf
    # TODO: for |x| << 1/2, one could use fall back to
    # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x)
    wp = prec + 15
    # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x)
    # The sqrt raises ComplexResult if x > 0
    a = mpf_sqrt(mpf_sub(fone, x, wp), wp)
    v = mpf_agm1(a, wp)
    r = mpf_div(mpf_pi(wp), v, prec, rnd)
    return mpf_shift(r, -1)
Пример #43
0
def mpf_ellipk(x, prec, rnd=round_fast):
    if not x[1]:
        if x == fzero:
            return mpf_shift(mpf_pi(prec, rnd), -1)
        if x == fninf:
            return fzero
        if x == fnan:
            return x
    if x == fone:
        return finf
    # TODO: for |x| << 1/2, one could use fall back to
    # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x)
    wp = prec + 15
    # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x)
    # The sqrt raises ComplexResult if x > 0
    a = mpf_sqrt(mpf_sub(fone, x, wp), wp)
    v = mpf_agm1(a, wp)
    r = mpf_div(mpf_pi(wp), v, prec, rnd)
    return mpf_shift(r, -1)
Пример #44
0
def mpf_atanh(x, prec, rnd=round_fast):
    # atanh(x) = log((1+x)/(1-x))/2
    sign, man, exp, bc = x
    if (not man) and exp:
        if x in (fzero, fnan):
            return x
        raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
    mag = bc + exp
    if mag > 0:
        if mag == 1 and man == 1:
            return [finf, fninf][sign]
        raise ComplexResult("atanh(x) is real only for -1 <= x <= 1")
    wp = prec + 15
    if mag < -8:
        if mag < -wp:
            return mpf_perturb(x, sign, prec, rnd)
        wp += (-mag)
    a = mpf_add(x, fone, wp)
    b = mpf_sub(fone, x, wp)
    return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1)
Пример #45
0
def mpf_fibonacci(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if x == fninf:
            return fnan
        return x
    # F(2^n) ~= 2^(2^n)
    size = abs(exp+bc)
    if exp >= 0:
        # Exact
        if size < 10 or size <= bitcount(prec):
            return from_int(ifib(to_int(x)), prec, rnd)
    # Use the modified Binet formula
    wp = prec + size + 20
    a = mpf_phi(wp)
    b = mpf_add(mpf_shift(a, 1), fnone, wp)
    u = mpf_pow(a, x, wp)
    v = mpf_cos_pi(x, wp)
    v = mpf_div(v, u, wp)
    u = mpf_sub(u, v, wp)
    u = mpf_div(u, b, prec, rnd)
    return u
Пример #46
0
def twinprime_fixed(prec):
    def I(n):
        return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n
    wp = 2*prec + 30
    res = fone
    primes = [from_rational(1,p,wp) for p in [2,3,5,7]]
    ppowers = [mpf_mul(p,p,wp) for p in primes]
    n = 2
    while 1:
        a = mpf_zeta_int(n, wp)
        for i in range(4):
            a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp)
            ppowers[i] = mpf_mul(ppowers[i], primes[i], wp)
        a = mpf_pow_int(a, -I(n), wp)
        if mpf_pos(a, prec+10, 'n') == fone:
            break
        #from libmpf import to_str
        #print n, to_str(mpf_sub(fone, a), 6)
        res = mpf_mul(res, a, wp)
        n += 1
    res = mpf_mul(res, from_int(3*15*35), wp)
    res = mpf_div(res, from_int(4*16*36), wp)
    return to_fixed(res, prec)
Пример #47
0
def mpf_log(x, prec, rnd=round_fast):
    """
    Compute the natural logarithm of the mpf value x. If x is negative,
    ComplexResult is raised.
    """
    sign, man, exp, bc = x
    if not man:
        if x == fzero: return fninf
        if x == finf: return finf
        if x == fnan: return fnan
    if sign:
        raise ComplexResult("logarithm of a negative number")

    # log(2^n)
    if man == 1:
        if not exp:
            return fzero
        return from_man_exp(exp*ln2_fixed(prec+20), -prec-20, prec, rnd)

    # Assume 20 bits to be sufficient for cancelling rounding errors
    wp = prec + 20
    mag = bc + exp

    # Already on the standard interval, (0.5, 1)
    if not mag:
        t = rshift(man, bc-wp)
        log2n = 0
        # Watch out for "x = 0.9999"
        # Proceed only if 1-x lost at most 15 bits of accuracy
        res = (MP_ONE << wp) - t
        if not (res >> (wp - 15)):
            # Find out extra precision needed
            delta = mpf_sub(x, fone, 10)
            delta_bits = -(delta[2] + delta[3])
            # O(x^2) term vanishes relatively
            if delta_bits > wp + 10:
                xm1 = mpf_sub(x, fone, prec, rnd)
                return mpf_perturb(xm1, 1, prec, rnd)
            else:
                wp += delta_bits
                t = rshift(man, bc-wp)

    # Already on the standard interval, (1, 2)
    elif mag == 1:
        t = rshift(man, bc-wp-1)
        log2n = 0
        # Watch out for "x = 1.0001"
        # Similar to above; note that we flip signs
        # to obtain a positive residual, ensuring that
        # the following shift rounds down
        res = t - (MP_ONE << wp)
        if not (res >> (wp - 15)):
            # Find out extra precision needed
            delta = mpf_sub(x, fone, 10)
            delta_bits = -(delta[2] + delta[3])
            # O(x^2) term vanishes relatively
            if delta_bits > wp + 10:
                xm1 = mpf_sub(x, fone, prec, rnd)
                return mpf_perturb(xm1, 1, prec, rnd)
            else:
                wp += delta_bits
                t = rshift(man, bc-wp-1)

    # Rescale
    else:
        # Estimated precision needed for n*log(2) to
        # be accurate relatively
        wp += int(math.log(1+abs(mag),2))
        log2n = mag * ln2_fixed(wp)
        # Rescaled argument as a fixed-point number
        t = rshift(man, bc-wp)

    # Use the faster method
    if wp < LOG_TAYLOR_PREC:
        a = log_taylor(t, wp)
    else:
        a = log_newton(t, wp)

    return from_man_exp(a + log2n, -wp, prec, rnd)
Пример #48
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0:fone}
        m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm)  - wp
        if m < 6:
            a = MPZ_ZERO
        else:
            a = bin1
        for j in xrange(1, m//6+1):
            usign, uman, uexp, ubc = u = numbers[m-6*j]
            if usign:
                uman = -uman
            s += lshift(a*uman, uexp-sexp)
            # Update inner binomial coefficient
            j6 = 6*j
            a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6))
            a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6))
        if case == 0: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m+3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m-3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m+2)*(m+3)) // (m*(m-1))
        if m > 6:
            bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6))
        state[:] = [m, bin, bin1]
    return numbers[n]
Пример #49
0
def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False):
    re, im = s
    if im == fzero:
        return mpf_zeta(re, prec, rnd, alt), fzero

    # slow for large s
    if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)):
        raise NotImplementedError

    wp = prec + 20

    # Near pole
    r = mpc_sub(mpc_one, s, wp)
    asign, aman, aexp, abc = mpc_abs(r, 10)
    pole_dist = -2*(aexp+abc)
    if pole_dist > wp:
        if alt:
            q = mpf_ln2(wp)
            y = mpf_mul(q, mpf_euler(wp), wp)
            g = mpf_shift(mpf_mul(q, q, wp), -1)
            g = mpf_sub(y, g)
            z = mpc_mul_mpf(r, mpf_neg(g), wp)
            z = mpc_add_mpf(z, q, wp)
            return mpc_pos(z, prec, rnd)
        else:
            q = mpc_neg(mpc_div(mpc_one, r, wp))
            q = mpc_add_mpf(q, mpf_euler(wp), wp)
            return mpc_pos(q, prec, rnd)
    else:
        wp += max(0, pole_dist)

    # Reflection formula. To be rigorous, we should reflect to the left of
    # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary
    # slowdown for interesting values of s
    if mpf_lt(re, fzero):
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp),
                wp), wp)
            return mpc_mul(mpc_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpc_sub(mpc_one, s, 10*wp)
        a = mpc_gamma(y, wp)
        b = mpc_zeta(y, wp)
        c = mpc_sin_pi(mpc_shift(s, -1), wp)
        rsign, rman, rexp, rbc = re
        isign, iman, iexp, ibc = im
        mag = max(rexp+rbc, iexp+ibc)
        wp2 = wp + mag
        pi = mpf_pi(wp+wp2)
        pi2 = (mpf_shift(pi, 1), fzero)
        d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2)
        return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd)
    n = int(wp/2.54 + 5)
    n += int(0.9*abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MPZ_ZERO
    tim = MPZ_ZERO
    one = MPZ_ONE << wp
    one_2wp = MPZ_ONE << (2*wp)
    critical_line = re == fhalf
    for k in xrange(n):
        log = log_int_fixed(k+1, wp)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // sqrt_fixed((k+1) << wp, wp)
        else:
            w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = mpf_cos_sin(from_man_exp(-imf * log, -2*wp), wp)
        tre += (w * to_fixed(wre, wp)) >> wp
        tim += (w * to_fixed(wim, wp)) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    if alt:
        return mpc_pos((tre, tim), prec, rnd)
    else:
        q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp)
        return mpc_div((tre, tim), q, prec, rnd)
Пример #50
0
def mpf_zeta(s, prec, rnd=round_fast, alt=0):
    sign, man, exp, bc = s
    if not man:
        if s == fzero:
            if alt:
                return fhalf
            else:
                return mpf_neg(fhalf)
        if s == finf:
            return fone
        return fnan
    wp = prec + 20
    # First term vanishes?
    if (not sign) and (exp + bc > (math.log(wp,2) + 2)):
        return mpf_perturb(fone, alt, prec, rnd)
    # Optimize for integer arguments
    elif exp >= 0:
        if alt:
            if s == fone:
                return mpf_ln2(prec, rnd)
            z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd])
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(z, q, prec, rnd)
        else:
            return mpf_zeta_int(to_int(s), prec, rnd)
    # Negative: use the reflection formula
    # Borwein only proves the accuracy bound for x >= 1/2. However, based on
    # tests, the accuracy without reflection is quite good even some distance
    # to the left of 1/2. XXX: verify this.
    if sign:
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
            return mpf_mul(mpf_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpf_sub(fone, s, 10*wp)
        a = mpf_gamma(y, wp)
        b = mpf_zeta(y, wp)
        c = mpf_sin_pi(mpf_shift(s, -1), wp)
        wp2 = wp + (exp+bc)
        pi = mpf_pi(wp+wp2)
        d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2)
        return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd)

    # Near pole
    r = mpf_sub(fone, s, wp)
    asign, aman, aexp, abc = mpf_abs(r)
    pole_dist = -2*(aexp+abc)
    if pole_dist > wp:
        if alt:
            return mpf_ln2(prec, rnd)
        else:
            q = mpf_neg(mpf_div(fone, r, wp))
            return mpf_add(q, mpf_euler(wp), prec, rnd)
    else:
        wp += max(0, pole_dist)

    t = MPZ_ZERO
    #wp += 16 - (prec & 15)
    # Use Borwein's algorithm
    n = int(wp/2.54 + 5)
    d = borwein_coefficients(n)
    t = MPZ_ZERO
    sf = to_fixed(s, wp)
    for k in xrange(n):
        u = from_man_exp(-sf*log_int_fixed(k+1, wp), -2*wp, wp)
        esign, eman, eexp, ebc = mpf_exp(u, wp)
        offset = eexp + wp
        if offset >= 0:
            w = ((d[k] - d[n]) * eman) << offset
        else:
            w = ((d[k] - d[n]) * eman) >> (-offset)
        if k & 1:
            t -= w
        else:
            t += w
    t = t // (-d[n])
    t = from_man_exp(t, -wp, wp)
    if alt:
        return mpf_pos(t, prec, rnd)
    else:
        q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp)
        return mpf_div(t, q, prec, rnd)
Пример #51
0
def mpf_bernoulli(n, prec, rnd=None):
    """Computation of Bernoulli numbers (numerically)"""
    if n < 2:
        if n < 0:
            raise ValueError("Bernoulli numbers only defined for n >= 0")
        if n == 0:
            return fone
        if n == 1:
            return mpf_neg(fhalf)
    # For odd n > 1, the Bernoulli numbers are zero
    if n & 1:
        return fzero
    # If precision is extremely high, we can save time by computing
    # the Bernoulli number at a lower precision that is sufficient to
    # obtain the exact fraction, round to the exact fraction, and
    # convert the fraction back to an mpf value at the original precision
    if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n) * 1.1 + 1000:
        p, q = bernfrac(n)
        return from_rational(p, q, prec, rnd or round_floor)
    if n > MAX_BERNOULLI_CACHE:
        return mpf_bernoulli_huge(n, prec, rnd)
    wp = prec + 30
    # Reuse nearby precisions
    wp += 32 - (prec & 31)
    cached = bernoulli_cache.get(wp)
    if cached:
        numbers, state = cached
        if n in numbers:
            if not rnd:
                return numbers[n]
            return mpf_pos(numbers[n], prec, rnd)
        m, bin, bin1 = state
        if n - m > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
    else:
        if n > 10:
            return mpf_bernoulli_huge(n, prec, rnd)
        numbers = {0: fone}
        m, bin, bin1 = state = [2, MP_BASE(10), MP_ONE]
        bernoulli_cache[wp] = (numbers, state)
    while m <= n:
        #print m
        case = m % 6
        # Accurately estimate size of B_m so we can use
        # fixed point math without using too much precision
        szbm = bernoulli_size(m)
        s = 0
        sexp = max(0, szbm) - wp
        if m < 6:
            a = MP_ZERO
        else:
            a = bin1
        for j in xrange(1, m // 6 + 1):
            usign, uman, uexp, ubc = u = numbers[m - 6 * j]
            if usign:
                uman = -uman
            s += lshift(a * uman, uexp - sexp)
            # Update inner binomial coefficient
            j6 = 6 * j
            a *= ((m - 5 - j6) * (m - 4 - j6) * (m - 3 - j6) * (m - 2 - j6) *
                  (m - 1 - j6) * (m - j6))
            a //= ((4 + j6) * (5 + j6) * (6 + j6) * (7 + j6) * (8 + j6) *
                   (9 + j6))
        if case == 0: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 2: b = mpf_rdiv_int(m + 3, f3, wp)
        if case == 4: b = mpf_rdiv_int(-m - 3, f6, wp)
        s = from_man_exp(s, sexp, wp)
        b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp)
        numbers[m] = b
        m += 2
        # Update outer binomial coefficient
        bin = bin * ((m + 2) * (m + 3)) // (m * (m - 1))
        if m > 6:
            bin1 = bin1 * ((2 + m) * (3 + m)) // ((m - 7) * (m - 6))
        state[:] = [m, bin, bin1]
Пример #52
0
    if im[0]:
        return rs + " - " + to_str(mpf_neg(im), dps) + "j"
    else:
        return rs + " + " + to_str(im, dps) + "j"


def mpc_add((a, b), (c, d), prec, rnd=round_fast):
    return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd)


def mpc_add_mpf((a, b), p, prec, rnd=round_fast):
    return mpf_add(a, p, prec, rnd), b


def mpc_sub((a, b), (c, d), prec, rnd=round_fast):
    return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd)


def mpc_sub_mpf((a, b), p, prec, rnd=round_fast):
    return mpf_sub(a, p, prec, rnd), b


def mpc_pos((a, b), prec, rnd=round_fast):
    return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd)


def mpc_neg((a, b), prec=None, rnd=round_fast):
    return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd)


def mpc_shift((a, b), n):
Пример #53
0
def mpf_exp(x, prec, rnd=round_fast):
    sign, man, exp, bc = x
    if not man:
        if not exp:
            return fone
        if x == fninf:
            return fzero
        return x
    mag = bc+exp
    # Fast handling e**n. TODO: the best cutoff depends on both the
    # size of n and the precision.
    if prec > 600 and exp >= 0:
        e = mpf_e(prec+10+int(1.45*mag))
        return mpf_pow_int(e, (-1)**sign *(man<<exp), prec, rnd)
    if mag < -prec-10:
        return mpf_perturb(fone, sign, prec, rnd)
    # extra precision needs to be similar in magnitude to log_2(|x|)
    # for the modulo reduction, plus r for the error from squaring r times
    wp = prec + max(0, mag)
    if wp < 300:
        r = int(2*wp**0.4)
        if mag < 0:
            r = max(1, r + mag)
        wp += r + 20
        t = to_fixed(x, wp)
        # abs(x) > 1?
        if mag > 1:
            lg2 = ln2_fixed(wp)
            n, t = divmod(t, lg2)
        else:
            n = 0
        man = exp_series(t, wp, r)
    else:
        use_newton = False
        # put a bound on exp to avoid infinite recursion in exp_newton
        # TODO find a good bound
        if wp > LIM_EXP_SERIES2 and exp < 1000:
            if mag > 0:
                use_newton = True
            elif mag <= 0 and -mag <= ns_exp[-1]:
                i = bisect(ns_exp, -mag-1)
                if i < len(ns_exp):
                    wp0 = precs_exp[i]
                    if wp > wp0:
                        use_newton = True

        if not use_newton:
            r = int(0.7 * wp**0.5)
            if mag < 0:
                r = max(1, r + mag)
            wp += r + 20
            t = to_fixed(x, wp)
            if mag > 1:
                lg2 = ln2_fixed(wp)
                n, t = divmod(t, lg2)
            else:
                n = 0
            man = exp_series2(t, wp, r)
        else:
            # if x is very small or very large use
            # exp(x + m) = exp(x) * e**m
            if mag > LIM_MAG:
                wp += mag*10 + 100
                n = int(mag * math.log(2)) + 1
                x = mpf_sub(x, from_int(n, wp), wp)
            elif mag <= 0:
                wp += -mag*10 + 100
                if mag < 0:
                    n = int(-mag * math.log(2)) + 1
                    x = mpf_add(x, from_int(n, wp), wp)
            res = exp_newton(x, wp)
            sign, man, exp, bc = res
            if mag < 0:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_div(res, t, wp)
                sign, man, exp, bc = res
            if mag > LIM_MAG:
                t = mpf_pow_int(mpf_e(wp), n, wp)
                res = mpf_mul(res, t, wp)
                sign, man, exp, bc = res
            return normalize(sign, man, exp, bc, prec, rnd)
    bc = bitcount(man)
    return normalize(0, man, int(-wp+n), bc, prec, rnd)
Пример #54
0
def acos_asin(z, prec, rnd, n):
    """ complex acos for n = 0, asin for n = 1
    The algorithm is described in
    T.E. Hull, T.F. Fairgrieve and P.T.P. Tang
    'Implementing the Complex Arcsine and Arcosine Functions
    using Exception Handling',
    ACM Trans. on Math. Software Vol. 23 (1997), p299
    The complex acos and asin can be defined as
    acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1))
    asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1))
    where z = a + I*b
    alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha
    r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2)
    These expressions are rewritten in different ways in different
    regions, delimited by two crossovers alpha_crossover and beta_crossover,
    and by abs(a) <= 1, in order to improve the numerical accuracy.
    """
    a, b = z
    wp = prec + 10
    # special cases with real argument
    if b == fzero:
        am = mpf_sub(fone, mpf_abs(a), wp)
        # case abs(a) <= 1
        if not am[0]:
            if n == 0:
                return mpf_acos(a, prec, rnd), fzero
            else:
                return mpf_asin(a, prec, rnd), fzero
        # cases abs(a) > 1
        else:
            # case a < -1
            if a[0]:
                pi = mpf_pi(prec, rnd)
                c = mpf_acosh(mpf_neg(a), prec, rnd)
                if n == 0:
                    return pi, mpf_neg(c)
                else:
                    return mpf_neg(mpf_shift(pi, -1)), c
            # case a > 1
            else:
                c = mpf_acosh(a, prec, rnd)
                if n == 0:
                    return fzero, c
                else:
                    pi = mpf_pi(prec, rnd)
                    return mpf_shift(pi, -1), mpf_neg(c)
    asign = bsign = 0
    if a[0]:
        a = mpf_neg(a)
        asign = 1
    if b[0]:
        b = mpf_neg(b)
        bsign = 1
    am = mpf_sub(fone, a, wp)
    ap = mpf_add(fone, a, wp)
    r = mpf_hypot(ap, b, wp)
    s = mpf_hypot(am, b, wp)
    alpha = mpf_shift(mpf_add(r, s, wp), -1)
    beta = mpf_div(a, alpha, wp)
    b2 = mpf_mul(b, b, wp)
    # case beta <= beta_crossover
    if not mpf_sub(beta_crossover, beta, wp)[0]:
        if n == 0:
            re = mpf_acos(beta, wp)
        else:
            re = mpf_asin(beta, wp)
    else:
        # to compute the real part in this region use the identity
        # asin(beta) = atan(beta/sqrt(1-beta**2))
        # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a)
        # alpha + a is numerically accurate; alpha - a can have
        # cancellations leading to numerical inaccuracies, so rewrite
        # it in differente ways according to the region
        Ax = mpf_add(alpha, a, wp)
        # case a <= 1
        if not am[0]:
            # c = b*b/(r + (a+1)); d = (s + (1-a))
            # alpha - a = (1/2)*(c + d)
            # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a)
            # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d)))
            c = mpf_div(b2, mpf_add(r, ap, wp), wp)
            d = mpf_add(s, am, wp)
            re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1)
            if n == 0:
                re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp)
            else:
                re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp)
        else:
            # c = Ax/(r + (a+1)); d = Ax/(s - (1-a))
            # alpha - a = (1/2)*(c + d)
            # case n = 0: re = atan(b*sqrt(c + d)/2/a)
            # case n = 1: re = atan(a/(b*sqrt(c + d)/2)
            c = mpf_div(Ax, mpf_add(r, ap, wp), wp)
            d = mpf_div(Ax, mpf_sub(s, am, wp), wp)
            re = mpf_shift(mpf_add(c, d, wp), -1)
            re = mpf_mul(b, mpf_sqrt(re, wp), wp)
            if n == 0:
                re = mpf_atan(mpf_div(re, a, wp), wp)
            else:
                re = mpf_atan(mpf_div(a, re, wp), wp)
    # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover
    # replace it with 1 + Am1 + sqrt(Am1*(alpha+1)))
    # where Am1 = alpha -1
    # if alpha <= alpha_crossover:
    if not mpf_sub(alpha_crossover, alpha, wp)[0]:
        c1 = mpf_div(b2, mpf_add(r, ap, wp), wp)
        # case a < 1
        if mpf_neg(am)[0]:
            # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a))
            c2 = mpf_add(s, am, wp)
            c2 = mpf_div(b2, c2, wp)
            Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
        else:
            # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a)))
            c2 = mpf_sub(s, am, wp)
            Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
        # im = log(1 + Am1 + sqrt(Am1*(alpha+1)))
        im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp)
        im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp)
    else:
        # im = log(alpha + sqrt(alpha*alpha - 1))
        im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp)
        im = mpf_log(mpf_add(alpha, im, wp), wp)
    if asign:
        if n == 0:
            re = mpf_sub(mpf_pi(wp), re, wp)
        else:
            re = mpf_neg(re)
    if not bsign and n == 0:
        im = mpf_neg(im)
    if bsign and n == 1:
        im = mpf_neg(im)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im
Пример #55
0
def mpi_delta(s, prec):
    sa, sb = s
    return mpf_sub(sb, sa, prec, round_up)
Пример #56
0
def acos_asin(z, prec, rnd, n):
    """ complex acos for n = 0, asin for n = 1
    The algorithm is described in
    T.E. Hull, T.F. Fairgrieve and P.T.P. Tang
    'Implementing the Complex Arcsine and Arcosine Functions
    using Exception Handling',
    ACM Trans. on Math. Software Vol. 23 (1997), p299
    The complex acos and asin can be defined as
    acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1))
    asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1))
    where z = a + I*b
    alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha
    r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2)
    These expressions are rewritten in different ways in different
    regions, delimited by two crossovers alpha_crossover and beta_crossover,
    and by abs(a) <= 1, in order to improve the numerical accuracy.
    """
    a, b = z
    wp = prec + 10
    # special cases with real argument
    if b == fzero:
        am = mpf_sub(fone, mpf_abs(a), wp)
        # case abs(a) <= 1
        if not am[0]:
            if n == 0:
                return mpf_acos(a, prec, rnd), fzero
            else:
                return mpf_asin(a, prec, rnd), fzero
        # cases abs(a) > 1
        else:
            # case a < -1
            if a[0]:
                pi = mpf_pi(prec, rnd)
                c = mpf_acosh(mpf_neg(a), prec, rnd)
                if n == 0:
                    return pi, mpf_neg(c)
                else:
                    return mpf_neg(mpf_shift(pi, -1)), c
            # case a > 1
            else:
                c = mpf_acosh(a, prec, rnd)
                if n == 0:
                    return fzero, c
                else:
                    pi = mpf_pi(prec, rnd)
                    return mpf_shift(pi, -1), mpf_neg(c)
    asign = bsign = 0
    if a[0]:
        a = mpf_neg(a)
        asign = 1
    if b[0]:
        b = mpf_neg(b)
        bsign = 1
    am = mpf_sub(fone, a, wp)
    ap = mpf_add(fone, a, wp)
    r = mpf_hypot(ap, b, wp)
    s = mpf_hypot(am, b, wp)
    alpha = mpf_shift(mpf_add(r, s, wp), -1)
    beta = mpf_div(a, alpha, wp)
    b2 = mpf_mul(b, b, wp)
    # case beta <= beta_crossover
    if not mpf_sub(beta_crossover, beta, wp)[0]:
        if n == 0:
            re = mpf_acos(beta, wp)
        else:
            re = mpf_asin(beta, wp)
    else:
        # to compute the real part in this region use the identity
        # asin(beta) = atan(beta/sqrt(1-beta**2))
        # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a)
        # alpha + a is numerically accurate; alpha - a can have
        # cancellations leading to numerical inaccuracies, so rewrite
        # it in differente ways according to the region
        Ax = mpf_add(alpha, a, wp)
        # case a <= 1
        if not am[0]:
            # c = b*b/(r + (a+1)); d = (s + (1-a))
            # alpha - a = (1/2)*(c + d)
            # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a)
            # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d)))
            c = mpf_div(b2, mpf_add(r, ap, wp), wp)
            d = mpf_add(s, am, wp)
            re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1)
            if n == 0:
                re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp)
            else:
                re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp)
        else:
            # c = Ax/(r + (a+1)); d = Ax/(s - (1-a))
            # alpha - a = (1/2)*(c + d)
            # case n = 0: re = atan(b*sqrt(c + d)/2/a)
            # case n = 1: re = atan(a/(b*sqrt(c + d)/2)
            c = mpf_div(Ax, mpf_add(r, ap, wp), wp)
            d = mpf_div(Ax, mpf_sub(s, am, wp), wp)
            re = mpf_shift(mpf_add(c, d, wp), -1)
            re = mpf_mul(b, mpf_sqrt(re, wp), wp)
            if n == 0:
                re = mpf_atan(mpf_div(re, a, wp), wp)
            else:
                re = mpf_atan(mpf_div(a, re, wp), wp)
    # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover
    # replace it with 1 + Am1 + sqrt(Am1*(alpha+1)))
    # where Am1 = alpha -1
    # if alpha <= alpha_crossover:
    if not mpf_sub(alpha_crossover, alpha, wp)[0]:
        c1 = mpf_div(b2, mpf_add(r, ap, wp), wp)
        # case a < 1
        if mpf_neg(am)[0]:
            # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a))
            c2 = mpf_add(s, am, wp)
            c2 = mpf_div(b2, c2, wp)
            Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
        else:
            # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a)))
            c2 = mpf_sub(s, am, wp)
            Am1 = mpf_shift(mpf_add(c1, c2, wp), -1)
        # im = log(1 + Am1 + sqrt(Am1*(alpha+1)))
        im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp)
        im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp)
    else:
        # im = log(alpha + sqrt(alpha*alpha - 1))
        im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp)
        im = mpf_log(mpf_add(alpha, im, wp), wp)
    if asign:
        if n == 0:
            re = mpf_sub(mpf_pi(wp), re, wp)
        else:
            re = mpf_neg(re)
    if not bsign and n == 0:
        im = mpf_neg(im)
    if bsign and n == 1:
        im = mpf_neg(im)
    re = normalize(re[0], re[1], re[2], re[3], prec, rnd)
    im = normalize(im[0], im[1], im[2], im[3], prec, rnd)
    return re, im