class PLDA(object): def __init__(self): self._instance = MPlda() def fit(self, x, y, iters=10): return self._instance.fit(x, y, iters) def transform(self, x, y): ''' Function: transform Summary: Transforms a given set of X vectors and Y labels to the PLDA dimension Examples: Attributes: @param (self): @param (x):The vectors which need to be transformed @param (y):Representing the labels for each vector Returns: A transformed vector ''' return self._instance.transform(x, y) def norm(self, vectors, transformedvecs, numutts=0): ''' Function: norm Summary: Normalizes the given model with mean/variance estimators Examples: Attributes: @param (self): @param (vectors):The input vectors for accumulating the statistics @param (transformedvecs):The enrol models which are scored against @param (numutts) default=0: Number of utterances which are considered Returns: None ''' return self._instance.norm(vectors, transformedvecs, numutts) def score(self, target, xvec, yvec): ''' Function: score Summary: Scores a given target against a given x,y vector pair Examples: Attributes: @param (self):InsertHere @param (target):The id of the fitted target vector @param (xvec):The enrolment vector @param (yvec):The test vector Returns: A score ( float) ''' return self._instance.score(target, xvec, yvec)
def __init__(self): self._instance = MPlda()