Predicted=float(linetokens[1]), ID=id)) id += 1 else: raise Exception( 'At least two columns (experimental DDG, predicted DDG) are expected.' ) return table except Exception, e: raise Exception('An exception occurred parsing the CSV/TSV file: %s' % str(e)) if __name__ == '__main__': try: arguments = docopt.docopt(__doc__.format(**locals())) except Exception, e: print('Failed while parsing arguments: %s.' % str(e)) sys.exit(1) # Read file input file input_filename = arguments['<inputfile>'][0] if not os.path.exists(input_filename): print('Error: the input file %s does not exist.' % input_filename) sys.exit(2) analysis_table = read_json(input_filename) if not analysis_table: analysis_table = parse_csv(input_filename) # Set up the output filename output_filename = arguments['--output']
for linetokens in lines: if len(linetokens) >= 3: table.append(dict(Experimental = float(linetokens[0]), Predicted = float(linetokens[1]), ID = str(linetokens[2]))) elif len(linetokens) == 2: table.append(dict(Experimental = float(linetokens[0]), Predicted = float(linetokens[1]), ID = id)) id += 1 else: raise Exception('At least two columns (experimental DDG, predicted DDG) are expected.') return table except Exception, e: raise Exception('An exception occurred parsing the CSV/TSV file: %s' % str(e)) if __name__ == '__main__': try: arguments = docopt.docopt(__doc__.format(**locals())) except Exception, e: print('Failed while parsing arguments: %s.' % str(e)) sys.exit(1) # Read file input file input_filename = arguments['<inputfile>'][0] if not os.path.exists(input_filename): print('Error: the input file %s does not exist.' % input_filename) sys.exit(2) analysis_table = read_json(input_filename) if not analysis_table: analysis_table = parse_csv(input_filename) # Set up the output filename output_filename = arguments['--output']
# Create the new PDB file with the loop residue backbone atoms added back in write_file(os.path.join(output_directory, '{0}.pdb'.format(pdb_prefix)), new_pdb_content) # Create a loop file in Rosetta numbering for protocols which require that format (the loopmodel code currently # requires this at the time of writing) write_file(os.path.join(output_directory, '{0}.loop'.format(pdb_prefix)), loop_file_content) sys.stdout.write('.') sys.stdout.flush() print('') if __name__ == '__main__': from libraries import docopt arguments = docopt.docopt(__doc__) output_directory = arguments['<output_directory>'] e, trc = '', '' if True: # Disable this code by default try: os.mkdir(output_directory) except Exception, e: trc = traceback.format_exc() if not os.path.exists(output_directory): colortext.error('Error: Could not create the output directory.') if e: colortext.error(str(e)) colortext.warning(trc) #create_pruned_structures(output_directory) add_missing_residues(output_directory)
#!/usr/bin/env python2 """\ Usage: hilbert_demo.py [--steps=STEPS] [--test-run] """ import subprocess, numpy as np from libraries import docopt, utils args = docopt.docopt(__doc__) num_particles = 512 if args['--test-run'] else 512 num_steps = int(args['--steps'] or (1 if args['--test-run'] else (20 if utils.running_on_cluster() else 3))) num_xyz_restraints = np.linspace(10, 50, num=num_steps).astype(int) num_pair_restraints = np.linspace(150, 500, num=num_steps).astype(int) params = [] for n_xyz in num_xyz_restraints: for n_pair in num_pair_restraints: params.append({ 'num_particles': num_particles, 'num_xyz_restraints': n_xyz, 'num_pair_restraints': n_pair, }) utils.clear_directories('jsons', 'pdbs', 'movies') utils.submit_job('run_hilbert_demo.py', params)