def read_mps(load,):

    load_path = load['path']
    load_exp = load['exp']
    if load['Is_continue']:
        data = bf.load_pr(load_path+load_exp+'_.pr')
    else:
        data = bf.load_pr(load_path+load_exp+'.pr')
    print(load_path+load_exp+'.pr')
    A = data['A']
    n = len(A.mps)
    dims=[1]
    for i in range(n-1):
        dims.append(A.mps[i].shape[2])
    dims.append(1)
    return A.mps, dims
def gcmpm_one_class(para=None):
    if para is None:
        para = pm.parameters_gcmpm_one_class()
    para['save_exp'] = save_exp_gcmpm_one_class(para)
    if para['parallel'] is True:
        par_pool = para['n_nodes']
    else:
        par_pool = None
    if para['if_load'] and os.path.isfile(para['save_exp']):
        a = bf.load_pr(os.path.join(para['data_path'], para['save_exp']), 'a')
    else:
        a = TNmachineLearning.MachineLearningMPS(para['d'], para['chi'], para['dataset'],
                                                 par_pool=par_pool)
    a.images2vecs([para['class']], [100])
    a.initialize_virtual_vecs_train()
    a.update_virtual_vecs_train('all', 'all', 'both')
    a.mps.correct_orthogonal_center(0, normalize=True)
    a.mps.mps[0] /= np.linalg.norm(a.mps.mps[0].reshape(-1, ))
    mps0 = a.mps.mps.copy()
    for t in range(0, para['sweep_time']):
        # from left to right
        if para['if_print_detail']:
            print('At the ' + str(t) + '-th sweep, from left to right')
        for nt in range(0, a.length):
            a.update_tensor_gradient(nt, para['step'])
            if nt != a.length-1:
                a.update_virtual_vecs_train('all', nt, 'left')
        # from left to right
        print('At the ' + str(t) + '-th sweep, from right to left')
        for nt in range(a.length-1, -1, -1):
            a.update_tensor_gradient(nt, para['step'])
            if nt != 0:
                a.update_virtual_vecs_train('all', nt, 'right')
        if t > para['check_time0'] and ((t+1) % para['check_time'] == 0
                                        or t+1 == para['sweep_time']):
            fid = ln_fidelity_per_site(mps0, a.mps.mps)
            if fid < (para['step'] * para['ratio_step_tol']):
                print('After ' + str(t+1) + ' sweeps: fid = %g' % fid)
                para['step'] *= para['step_ratio']
            elif t+1 == para['sweep_time']:
                print('After all ' + str(t+1) + ' sweeps finished, fid = %g. '
                                                'Consider to increase the sweep times.' % fid)
            else:
                print('After ' + str(t+1) + ' sweeps, fid = %g.' % fid)
                mps0 = a.mps.mps.copy()
            if para['step'] < para['step_min']:
                print('Now step = ' + str(para['step']) + ' is sufficiently small. Break the loop')
                break
            else:
                print('Now step = ' + str(para['step']))
    if para['if_save']:
        save_pr(para['data_path'], para['save_exp'], [a, para], ['a', 'para'])
    return a, para
Пример #3
0
def labeled_gtn(para):
    if para is None:
        para = pm.parameters_labeled_gtn()
    para['save_exp'] = save_exp_labeled_gtn(para)
    if para['parallel'] is True:
        par_pool = para['n_nodes']
    else:
        par_pool = None

    # Preparing testing dataset
    b = TNmachineLearning.MachineLearningFeatureMap(
        para['d'],
        file_sample='t10k-images.idx3-ubyte',
        file_label='t10k-labels.idx1-ubyte')
    b.load_data()
    b.select_samples(para['classes'])
    b.add_labels_to_images()
    b.images2vecs(para['theta'])

    data_file = os.path.join(para['data_path'], para['save_exp'])
    if para['if_load'] and os.path.isfile(data_file):
        print('Data exist. Load directly.')
        a = bf.load_pr(data_file, 'a')
    else:
        a = TNmachineLearning.MachineLearningMPS(para['d'],
                                                 para['chi'],
                                                 para['dataset'],
                                                 par_pool=par_pool)
        a.load_data()
        a.select_samples(para['classes'])
        a.add_labels_to_images()
        a.images2vecs(para['theta'] * np.pi / 2)
        a.initial_mps()
        a.mps.correct_orthogonal_center(0, normalize=True)
        a.initialize_virtual_vecs_train()
        a.update_virtual_vecs_train_all_tensors('both')
        accuracy0 = 0
        for t in range(0, para['sweep_time']):
            # from left to right
            for nt in range(0, a.length):
                a.update_tensor_gradient(nt, para['step'])
                if nt != a.length - 1:
                    a.update_virtual_vecs_train(nt, 'left')
            # from left to right
            for nt in range(a.length - 1, -1, -1):
                a.update_tensor_gradient(nt, para['step'])
                if nt != 0:
                    a.update_virtual_vecs_train(nt, 'right')
            if t > para['check_time0'] and ((t + 1) % para['check_time'] == 0
                                            or t + 1 == para['sweep_time']):
                b.input_mps(a.mps)
                accuracy = b.calculate_accuracy()
                print('After the ' + str(t) +
                      '-th sweep, the testing accuracy = ' + str(accuracy))
                if abs(accuracy - accuracy0) < (para['step'] *
                                                para['ratio_step_tol']):
                    para['step'] *= para['step_ratio']
                    accuracy0 = accuracy
                    print('Converged. Reduce the gradient step to ' +
                          str(para['step']))
                elif t + 1 == para['sweep_time']:
                    print('After all ' + str(t + 1) +
                          ' sweeps finished, not converged. '
                          'Consider to increase the sweep times.')
                else:
                    accuracy0 = accuracy
                if para['step'] < para['step_min']:
                    print('Now step = ' + str(para['step']) +
                          ' is sufficiently small. Break the loop')
                    break
                else:
                    print('Now step = ' + str(para['step']))
        a.clear_before_save()
        if para['if_save']:
            save_pr(para['data_path'], para['save_exp'], [a, para],
                    ['a', 'para'])
    accuracy = b.calculate_accuracy()
    print('The final testing accuracy = ' + str(accuracy))

    return a, para
Пример #4
0
def gtn_one_class(para=None, images=None, labels=None):
    if 'to_black_and_white' not in para:
        para['to_black_and_white'] = False
    if para is None:
        para = pm.parameters_gtn_one_class()
    para['save_exp'] = save_exp_gtn_one_class(para)
    if para['if_load'] and os.path.isfile(
            os.path.join(para['data_path'], para['save_exp'])):
        a = bf.load_pr(os.path.join(para['data_path'], para['save_exp']), 'a')
    else:
        a = TNmachineLearning.MachineLearningMPS(para['d'], para['chi'],
                                                 para['dataset'])
        if para['dataset'] is 'custom':
            a.input_data(copy.deepcopy(images), copy.deepcopy(labels))
        else:
            a.load_data()
        if a.is_there_labels:
            a.select_samples([para['class']])
        if para['to_black_and_white']:
            a.to_black_and_white()
        if para['dct'] is True:
            a.dct(shift=para['shift'], factor=para['factor'])
        a.images2vecs(theta_max=para['theta'] * np.pi / 2)
        a.initial_mps(center=0, ini_way='1')
        a.initialize_virtual_vecs_train()
        a.mps.correct_orthogonal_center(0)
        a.update_tensor_gradient(0, para['step'])
        nll0 = a.compute_nll()
        step = copy.deepcopy(para['step'])
        print('Iniitially, NLL = ' + str(nll0))
        for t in range(0, para['sweep_time']):
            # from left to right
            if para['if_print_detail']:
                print('At the ' + str(t + 1) + '-th sweep, from left to right')
                t0 = time.time()
                tt0 = time.clock()
            for nt in range(0, a.length):
                a.mps.correct_orthogonal_center(nt)
                if nt != 0:
                    a.update_virtual_vecs_train(nt - 1, 'left')
                a.update_tensor_gradient(nt, step)
            # from right to left
            if para['if_print_detail']:
                print('At the ' + str(t + 1) + '-th sweep, from right to left')
            for nt in range(a.length - 1, -1, -1):
                a.mps.correct_orthogonal_center(nt)
                if nt != a.length - 1:
                    a.update_virtual_vecs_train(nt + 1, 'right')
                a.update_tensor_gradient(nt, step)
            if para['if_print_detail']:
                print('Wall time cost for one loop: %s' % (time.time() - t0))
                print('CPU time cost for one loop: %s' % (time.clock() - tt0))

            if t > (para['check_time0'] - 2) and (
                (t + 1) % para['check_time'] == 0
                    or t + 1 == para['sweep_time']):
                nll = a.compute_nll()
                print('NLL = ' + str(nll))
                # fid = fidelity_per_site(mps0, a.mps.mps)
                fid = abs(nll - nll0) / nll0
                if fid < (step * para['step_ratio']):
                    print('After ' + str(t + 1) + ' sweeps: fid = %g' % fid)
                    step *= para['step_ratio']
                    # mps0 = copy.deepcopy(a.mps.mps)
                    nll0 = nll
                elif t + 1 == para['sweep_time']:
                    print('After all ' + str(t + 1) +
                          ' sweeps finished, fid = %g. '
                          'Consider to increase the sweep times.' % fid)
                else:
                    print('After ' + str(t + 1) + ' sweeps, fid = %g.' % fid)
                    # mps0 = copy.deepcopy(a.mps.mps)
                    nll0 = nll
                if step < para['step_min']:
                    print('Now step = ' + str(step) +
                          ' is sufficiently small. Break the loop')
                    break
                else:
                    print('Now step = ' + str(step))
        a.clear_before_save()
        if para['if_save']:
            save_pr(para['data_path'], para['save_exp'], [a, para],
                    ['a', 'para'])
    return a, para
Пример #5
0
Np2 = np.size(np.array(P2))
lable = np.array(P)
print(lable.T)
fe = np.zeros((Np1, Np2))
fe_log = np.zeros((Np1, Np2))

t0 = time.time()
for it1 in range(Np1):
    print('label=', P1[it1])
    for it2 in range(Np2):
        hx1 = P1[it1]
        hx2 = P2[it2]
        #load_path = '..\\..\\..\\data_dmrg\\QTSEN\\' + modelpath + '\\data_pr\\L%g_chi%g\\' % (N, chi)
        load_exp1 = chainname + 'N%d_J(%g,%g)_h(%g,%g)_chi%d' % (
            N, Jxy, Jz, hx1, hz, chi) + bounc + '.pr'
        load_exp2 = chainname + 'N%d_J(%g,%g)_h(%g,%g)_chi%d' % (
            N, Jxy, Jz, hx2, hz, chi) + bounc + '.pr'
        datap1 = bf.load_pr(load_exp1)
        datap2 = bf.load_pr(load_exp2)
        Ap1 = datap1['A']
        Ap2 = datap2['A']
        f_log, f = MPSClass.ln_fidelity_per_site_yy(Ap1.mps, Ap2.mps)
        fe_log[it1, it2] = f_log
        fe[it1, it2] = f

print('the cost of time:', time.time() - t0)
#save_path='..\\..\\..\\data_dmrg\\QTSEN\\' +  modelpath + '\\data_fidelity_matrix\\'
save_exp = 'fidelitymatrix_N%d_chi%d_hx_(%g,%g,%g)' % (N, chi, P[0], P[-1],
                                                       Np) + '.npz'
#mkdir(save_path)
np.savez(save_exp, fe=fe, fe_log=fe_log, lable=lable, P1=P1, P2=P2)