Пример #1
0
def manager(tile, **kwargs):
    #SETUP VARIBLES
    info = kwargs.get('info', True)
    years = kwargs.get('years', None)
    outpath = kwargs.get('outpath', None)

    #GET IMAGE INFO
    for y in years:
        name = tile + '_' + y

        featurepath = fm.check_folder(outpath, name, 'Features')
        fn = [f for f in os.listdir(featurepath) if f.endswith('.tif')]
        if len(fn) == 0:
            raise IOError('Unable to find input data!')

    img = fm.readGeoTIFFD(fm.joinpath(featurepath, fn[0]), metadata=False)
    height, width, totfeatures = img.shape

    #CHECK TS DATA
    for y in years:
        for feature in range(totfeatures):
            n1 = tile + '_' + y
            n2 = 'NDI' + str(feature + 1)
            tspath = fm.check_folder(outpath, n1, 'NDI_TimeSeries', n2)
            if not os.path.exists(fm.joinpath(tspath, 'ts.h5')):
                raise IOError('Unable to find input data!')

    #PREPARE PARAMETERS
    height = str(height)
    width = str(width)
    startyear = str(years[0])
    endyear = str(years[-1])
    frequency = str(kwargs.get('frequency', 365))
    tile = str(tile)
    batchsize = str(kwargs.get('batchsize', 200))

    for feature in range(totfeatures):
        if info:
            print('Change detection for feature %i/%i...' %
                  ((feature + 1), totfeatures),
                  end='\r')

        feature = str(feature + 1)

        # rscript libs/ToolboxModules/callbfast.R height width startyear endyear frequency tile feature batchsize outpath
        process = subprocess.run([
            'rscript', 'libs/ToolboxModules/callbfast.R', height, width,
            startyear, endyear, frequency, tile, feature, batchsize, outpath
        ],
                                 stdout=subprocess.PIPE,
                                 universal_newlines=True)
Пример #2
0
def loadts_block(i, j, feature, loadpath, temppath, **kwargs):
    blocksize = kwargs.get('blocksize', 200)

    fn = [f for f in os.listdir(loadpath) if f.endswith('.tif')]
    totimg = len(fn)
    matr = np.empty((blocksize, blocksize, totimg))
    mask = np.empty((blocksize, blocksize, totimg), dtype=bool)
    days = []

    #RECONSTRUCT TS
    for idx, f in enumerate(fn):
        mtr = fm.readGeoTIFFD(fm.joinpath(loadpath, f),
                              band=feature,
                              metadata=False)
        matr[..., idx] = mtr[i:i + blocksize, j:j + blocksize]

        #MASK FOR VALID VALUES
        f = f.split('_')  #split filename
        name = f[0] + '_' + f[1]
        maskpath = fm.joinpath(temppath, name, 'MASK.npy')
        msk = np.load(maskpath)
        msk = (msk == 3) | (msk == 4) | bindilation(msk == 2,
                                                    iterations=50) | (msk == 1)
        msk = np.logical_not(msk)
        mask[..., idx] = msk[i:i + blocksize, j:j + blocksize]

        date = f[1].split('T')  #split date and time
        days.append(date[0])

    start = fn[0].split('_')
    start = start[1].split('T')
    start = start[0]

    firstday = fm.string2ordinal(start) - 1
    days = [(fm.string2ordinal(d) - firstday) for d in days]
    days = np.array(days)

    return matr, mask, days
def manager(tile, **kwargs):
    #SETUP VARIBLES  
    info = kwargs.get('info', True)
    years = kwargs.get('years', None)
    outpath = kwargs.get('outpath', None)
    loadpath = '' #TODO: where is the test data?
    savepath = fm.check_folder(outpath, tile, 'LCclassificationAndCD')

    blocksize = kwargs.get('blocksize', 200)
    n_classes = kwargs.get('n_classes', 9)
    DTW_max_samp = kwargs.get('DTW_max_samp', 15)   # max number of samples of DTW
    MAX_CD = kwargs.get('MAX_CD', 1)                # max number of detected changes

    col_nPIXEL = 0
    col_nCLASS = 1
    col_nBAND  = 2
    col_DATA = 3


    ###############################
    # GET INFO AND INITIALIZATION #
    ###############################
    for rootname, _, filenames in os.walk(loadpath):
        for f in filenames:
            if (f.endswith('.tif')):
                path = fm.joinpath(rootname, f) 
    img = fm.readGeoTIFFD(path, metadata=False)
    width, height, totfeature = img.shape

    for rootname, _, filenames in os.walk(loadpath):
        for f in filenames:
            if (f.endswith('ts.h5')):
                path = fm.joinpath(rootname)
    with h5py.File(fm.joinpath(path,f), 'r') as hf:
        NDI_ = np.array(hf["ts"])

    
    #Get classes intervals
    class_int = np.zeros(n_classes)
    class_int_mask = np.unique(NDI_[:,col_nCLASS]).astype(int).tolist()
    for n in class_int_mask:
        class_int[n-1] = n
    class_int = class_int.astype(int).tolist()

    #Get number of seeds
    n_seeds = len(np.unique(NDI_[:,col_nPIXEL]))
    
    #Get number of features
    n_features = totfeature

    #Get number of seeds per class and class seeds mask
    n_seeds_c = np.zeros(n_classes)
    for nc in class_int:
        n_seeds_c[nc-1] = np.size(NDI_[NDI_[:,col_nCLASS]==nc, :], axis=0)
    n_seeds_c = n_seeds_c.astype(int).tolist()

    seed_class_mask = NDI_[:,col_nCLASS]

    #Define blocksize
    nseeds_b = blocksize


    #Multi feature DTW maximum distance
    path = fm.check_folder(outpath, tile, 'LCTraining_DTW', 'Multifeature')

    DTW_max_d = 0
    for b1 in range(0, n_seeds, nseeds_b):
        for b2 in range(0, n_seeds, nseeds_b):
            with h5py.File(filename, 'r') as hf:
                max_d_block = np.nanmax(np.array(hf["DTW_matrix"][b1:b1+nseeds_b, b2:b2+nseeds_b]))
                if max_d_block > DTW_max_d:
                    DTW_max_d = max_d_block

    #Loading the models
    path = fm.check_folder(outpath, tile, 'LCTraining_DTW')
    models = np.load(fm.joinpath(path, "models.npy")) #TODO: npy or h5?

    
    ############################
    # LC CLASSIFICATION AND CD #
    ############################
    #Time array definition
    t_seq_st = np.array([1, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73])
    t_seq_en = np.array([366, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73])
    t_seq_st = np.cumsum(t_seq_st)
    t_seq_en = np.cumsum(t_seq_en)
    
    #Similarity trends computation and classification
    Test_simi_traj = [None]*n_seeds
    LC_seq = [None]*n_seeds

    for ns in range(n_seeds):
        Traj1 = None
        for nb, band in enumerate(n_features):
            Seeds = load_seeds(tile, ns, nb, col_DATA, **kwargs)
            if Traj1 is None:
                Traj1 = np.zeros((len(n_features), len(Seeds[col_DATA:])))
                Traj1[nb,:] = Seeds[col_DATA:]
            else:
                Traj1[nb,:] = Seeds[col_DATA:]

        pixnr = Seeds[col_nPIXEL]
        Test_simi_traj[pixnr] = np.empty((n_classes, np.size(t_seq_st)))
        LC_seq[pixnr] = np.empty((2, np.size(t_seq_st)))

        for ts in range(np.size(t_seq_st)):
            Traj1_T = Traj1[:, t_seq_st[ts]:t_seq_en[ts]]
            Traj1_T = np.roll(Traj1_T, 73*ts, axis=1)

            for nc in range(n_classes):
                max_simi = 0

                for nm in range(len(models[nc])):
                    Traj2 = models[nc][nm]
                    simi = (DTW_max_d - DTW(Traj1_T, Traj2, DTW_max_samp=DTW_max_samp)) / DTW_max_d #TODO: distance_fast
                    max_simi = max(max_simi, simi)

                Test_simi_traj[pixnr][nc,ts] = max_simi

            LC_seq[pixnr][0,ts] = np.argmax(Test_simi_traj[ns][:,ts]) + 1      # +1 number of class vs index
    
    #Stability rule application
    CD_counter = np.empty(n_seeds)
    break_p = np.empty((n_seeds, MAX_CD))
    LC_seq_bp = np.empty((n_seeds, MAX_CD+1))

    for ns in range(n_seeds):
        counter = 0

        for ts in range(np.size(t_seq_st)):
            if ts == 0:
                LC_seq[ns][1,ts] = LC_seq[ns][0,ts]
            else:
                if (LC_seq[ns][0,ts] == LC_seq[ns][0,ts-1]) and (counter == 0):
                    LC_seq[ns][1,ts] = LC_seq[ns][1,ts-1]
                elif LC_seq[ns][0,ts] != LC_seq[ns][0,ts-1]:
                    LC_seq[ns][1,ts] = LC_seq[ns][1,ts-1]
                    counter = 1
                elif LC_seq[ns][0,ts] == LC_seq[ns][0,ts-1]:
                    counter = counter + 1
                    if counter<4:
                        LC_seq[ns][1,ts] = LC_seq[ns][1,ts-1]
                    else:
                        LC_seq[ns][1,ts-3] = LC_seq[ns][0,ts]
                        LC_seq[ns][1,ts-2] = LC_seq[ns][0,ts]
                        LC_seq[ns][1,ts-1] = LC_seq[ns][0,ts]
                        LC_seq[ns][1,ts] = LC_seq[ns][0,ts]
                        counter = 0

        CD_counter[ns] = 0

        for ts in range(1, np.size(t_seq_st)):
            if LC_seq[ns][1,ts] != LC_seq[ns][1,ts-1]:
                CD_counter[ns] = CD_counter[ns] + 1
                if CD_counter[ns] <= MAX_CD:
                    break_p[ns, CD_counter[ns]-1] = ts #TODO: -1?
                    LC_seq_bp[ns, CD_counter[ns]-1] = LC_seq[ns][1,ts-1]
                    LC_seq_bp[ns, CD_counter[ns]] = LC_seq[ns][1,ts]

        if CD_counter[ns] == 0:
            break_p[ns,0] = 0
            LC_seq_bp[ns,0] = LC_seq[ns][1,0]
            LC_seq_bp[ns,1] = LC_seq[ns][1,0]

    np.save(fm.joinpath(savepath, "LC_seq.npy"), LC_seq)
    np.save(fm.joinpath(savepath, "Test_simi_traj.npy"), Test_simi_traj)

    #Output maps
    nyears = len(years)
    outmaps = [None]*nyears
    for ny in range(nyears):
        outmaps[ny] = np.zeros((height, width, 2))

    for row in range(height):
        for col in range(width):
            ns = width*row + col

            if break_p[ns,0] == 0:
                pass
            else:
                z = break_p[ns,0]
                start_z = t_seq_st[z]
                end_z = t_seq_en[z]
                int_z = np.arange(start_z, end_z)
                int_z = np.ceil(int_z/365)

                for ny in range(nyears):
                    perc = np.sum(int_z[int_z == (ny+1)]) / (365*(ny+1))
                    perc = perc*100
Пример #4
0
def manager(tile, **kwargs):
    #SETUP DEFAULT OPTIONS
    info = kwargs.get('info', True)
    years = kwargs.get('years', None)
    outpath = kwargs.get('outpath', None)
    savepath = fm.check_folder(outpath, tile, 'LCTraining_DTW')

    blocksize = kwargs.get('blocksize', 500)
    n_classes = kwargs.get('n_classes', 9)
    multiprocessing = kwargs.get('multiprocessing', True)
    weekly = kwargs.get('weekly', True)

    singlefeaturedtw = kwargs.get('singlefeaturedtw', False)
    featureselection = kwargs.get('featureselection', False)
    multifeatureDTW = kwargs.get('multifeatureDTW', False)
    similarity = kwargs.get('similarity', False)
    classprototypes = kwargs.get('classprototypes', False)

    DTW_max_samp = kwargs.get('DTW_max_samp',
                              15)  # max number of samples of DTW

    col_nPIXEL = 0
    col_nCLASS = 1
    col_nBAND = 2
    col_DATA = 3

    ###############################
    # GET INFO AND INITIALIZATION #
    ###############################
    for rootname, _, filenames in os.walk(outpath):
        for f in filenames:
            if (f.endswith('.tif')):
                loadpath = fm.joinpath(rootname, f)
    img = fm.readGeoTIFFD(loadpath, metadata=False)
    width, height, totfeature = img.shape

    for rootname, _, filenames in os.walk(outpath):
        for f in filenames:
            if (f.endswith('ts.h5')):
                loadpath = fm.joinpath(rootname, f)

    with h5py.File(loadpath, 'r') as hf:
        NDI_ = np.array(hf["ts"])

    #Get classes intervals
    class_int = np.zeros(n_classes)
    class_int_mask = np.unique(NDI_[:, col_nCLASS]).astype(int).tolist()
    for n in class_int_mask:
        class_int[n - 1] = n
    class_int = class_int.astype(int).tolist()

    #Get number of seeds
    n_seeds = len(np.unique(NDI_[:, col_nPIXEL]))

    #Get number of features
    n_features = totfeature

    #Get number of seeds per class and class seeds mask
    n_seeds_c = np.zeros(n_classes)
    for nc in class_int:
        n_seeds_c[nc - 1] = np.size(NDI_[NDI_[:, col_nCLASS] == nc, :], axis=0)
    n_seeds_c = n_seeds_c.astype(int).tolist()

    seed_class_mask = NDI_[:, col_nCLASS]

    #Define blocksize
    nseeds_b = blocksize

    #Space of analysis parameters
    min_perc_samp_V = np.arange(
        1, 0.64, -0.03).tolist()  # minimum percentage of total used samples
    min_perc_samp_mod_V = np.ones(12, dtype=float) / np.arange(
        1, 13)  # minimum percentage of used samples per model
    min_perc_samp_mod_V = min_perc_samp_mod_V.tolist()

    sepa_b_vs_b = np.zeros((12, 12, n_features))

    ##########################################
    # SINGLE FEATURE DTW SIMILARITY MATRICES #
    ##########################################
    if singlefeaturedtw:

        for feature in range(n_features):
            if info:
                t_start = time.time()
                print('Computing DTW feature %i/%i...' %
                      ((feature + 1), n_features),
                      end='\r')

            path = fm.check_folder(savepath, "Singlefeature",
                                   'DTW_matrix_B' + str(feature + 1))

            for b1 in range(0, n_seeds, nseeds_b):
                Seeds_B_B1 = load_block(tile, b1, feature, col_DATA, **kwargs)
                for b2 in range(0, n_seeds, nseeds_b):
                    Seeds_B_B2 = load_block(tile, b2, feature, col_DATA,
                                            **kwargs)
                    singledtw(Seeds_B_B1, Seeds_B_B2, b1, b2, nseeds_b,
                              n_seeds, path, **kwargs)

            if info:
                t_end = time.time()
                print(
                    '\nMODULE 4: calculating DTW for %ith feature..Took %i' %
                    (feature + 1, (t_end - t_start) / 60), 'min')

    #Single feature DTW maximum distance
    DTW_max_d_B = np.zeros(n_features)

    for feature in range(n_features):
        path = fm.check_folder(savepath, "Singlefeature",
                               'DTW_matrix_B' + str(feature + 1))
        filename = fm.joinpath(path, 'DTW_matrix_B.h5')

        max_d = 0
        for b1 in range(0, n_seeds, nseeds_b):
            for b2 in range(0, n_seeds, nseeds_b):
                with h5py.File(filename, 'r') as hf:
                    block = np.array(hf["DTW_matrix_B"][b1:b1 + nseeds_b,
                                                        b2:b2 + nseeds_b])
                    max_d_block = np.nanmax(block[block != np.inf])
                    if max_d_block > max_d:
                        max_d = max_d_block

        DTW_max_d_B[feature] = max_d

    ######################################################
    # FEATURE SPACE ANALYSIS AND FEATURE SPACE REDUCTION #
    ######################################################
    if featureselection:

        for feature in range(n_features):
            if info:
                t_start = time.time()
                print('Feature %i/%i...' % ((feature + 1), n_features),
                      end='\r')

            sepa_c_vs_c = np.zeros((12, 12))
            sepa_c_vs_c_N = np.zeros((12, 12))

            for i, nc in enumerate(class_int_mask):
                c_r = np.delete(class_int_mask, i).tolist()
                for nc1 in c_r:
                    simi_c_W, simi_c_C = load_block_DTW(
                        seed_class_mask, feature, DTW_max_d_B[feature], nc,
                        nc1, savepath)

                    for col_i, min_perc_samp in enumerate(min_perc_samp_V):
                        for row_i, min_perc_samp_mod in enumerate(
                                min_perc_samp_mod_V):
                            sepa_mea = np.zeros(n_seeds_c[nc - 1])
                            for nsc in range(n_seeds_c[nc - 1]):
                                simi_c_C_s = simi_c_C[:, nsc]
                                simi_c_C_s = simi_c_C_s[~np.isnan(simi_c_C_s)]
                                simi_c_C_s = sorted(simi_c_C_s, reverse=True)
                                simi_c_C_s = simi_c_C_s[
                                    0:math.ceil(n_seeds_c[nc - 1] *
                                                min_perc_samp_mod *
                                                min_perc_samp)]
                                simi_c_W_s = simi_c_W[:, nsc]
                                simi_c_W_s = sorted(simi_c_W_s, reverse=True)
                                simi_c_W_s = simi_c_W_s[
                                    0:math.ceil(n_seeds_c[nc - 1] *
                                                min_perc_samp_mod *
                                                min_perc_samp)]
                                pd_C_mu, pd_C_sigma = scipy.stats.distributions.norm.fit(
                                    simi_c_C_s)
                                pd_W_mu, pd_W_sigma = scipy.stats.distributions.norm.fit(
                                    simi_c_W_s)
                                if pd_C_mu <= pd_W_mu:
                                    sepa_mea[nsc] = np.nan
                                else:
                                    sepa_mea[nsc] = (pd_C_mu - pd_W_mu) / (
                                        pd_C_sigma + pd_W_sigma)

                            if (sepa_mea[~np.isnan(sepa_mea)]).size / (
                                    n_seeds_c[nc - 1]) >= min_perc_samp:
                                sepa_c_vs_c[row_i, col_i] = sepa_c_vs_c[
                                    row_i, col_i] + np.mean(
                                        sepa_mea[~np.isnan(sepa_mea)])
                                sepa_c_vs_c_N[row_i,
                                              col_i] = sepa_c_vs_c_N[row_i,
                                                                     col_i] + 1

            sepa_b_vs_b[..., feature] = sepa_c_vs_c * sepa_c_vs_c_N

            if info:
                t_end = time.time()
                print(
                    '\nMODULE 4: feature selection for %i th feature..Took %i'
                    % (feature + 1, t_end - t_start / 60), 'min')

        np.save(fm.joinpath(savepath, "sepa_b_vs_b.npy"), sepa_b_vs_b)

    #Search for Class Cluster Parameters
    # select_bands = np.load(fm.joinpath(savepath, "select_bands.npy"))
    sepa_b_vs_b = np.load(fm.joinpath(savepath, "sepa_b_vs_b.npy"))
    # select_bands = select_bands.astype(int).tolist()
    sepa_FS = np.zeros((12, 12))
    for nb in range(n_features):
        sepa_FS = sepa_FS + sepa_b_vs_b[:, :, nb]

    mean_sepa_FS = np.mean(sepa_FS, axis=1)
    max_sepa_pos_samp_x_mod_FS = np.argmax(mean_sepa_FS)
    mean_sepa_max_v_FS = sepa_FS[max_sepa_pos_samp_x_mod_FS, :]
    mean_sepa_max_v_derivate_FS = np.diff(mean_sepa_max_v_FS)
    mean_sepa_max_v_derivate_FS = mean_sepa_max_v_derivate_FS / np.max(
        mean_sepa_max_v_derivate_FS)
    mean_sepa_max_v_derivate_FS = mean_sepa_max_v_derivate_FS * mean_sepa_max_v_FS[
        1:]

    max_sepa_pos_perc_samp_FS = np.argmax(mean_sepa_max_v_derivate_FS)
    max_sepa_pos_perc_samp_FS = max_sepa_pos_perc_samp_FS + 1

    min_perc_samp = min_perc_samp_V[max_sepa_pos_perc_samp_FS]
    min_perc_samp_mod = min_perc_samp_V[
        max_sepa_pos_perc_samp_FS] * min_perc_samp_mod_V[
            max_sepa_pos_samp_x_mod_FS]
    max_mod_class = np.round(min_perc_samp_V[max_sepa_pos_perc_samp_FS] /
                             min_perc_samp_mod)

    #######################################
    # MULTI FEATURE DTW SIMILARITY MATRIX #
    #######################################
    if multifeatureDTW:

        if info:
            t_start = time.time()
            print('Computing multifeature DTW ...', end='\r')

        # select_bands = np.load(fm.joinpath(savepath, "select_bands.npy"))
        # select_bands = select_bands.astype(int).tolist()

        path = fm.check_folder(savepath, 'Multifeature')

        for b1 in range(0, n_seeds, nseeds_b):
            Seeds_B1 = load_block_multifeature(tile, b1, n_features, col_DATA,
                                               **kwargs)
            for b2 in range(0, n_seeds, nseeds_b):
                Seeds_B2 = load_block_multifeature(tile, b1, n_features,
                                                   col_DATA, **kwargs)
                multidtw(Seeds_B1, Seeds_B2, b1, b2, nseeds_b, n_seeds, path,
                         **kwargs)

        if info:
            t_end = time.time()
            print(
                '\nMODULE 4: calculating multifeature DTW ...Took %i' %
                ((t_end - t_start) / 60), 'min')

    #Multi feature DTW maximum distance
    path = fm.check_folder(savepath, 'Multifeature')
    filename = fm.joinpath(path, 'DTW_matrix.h5')

    DTW_max_d = 0
    for b1 in range(0, n_seeds, nseeds_b):
        for b2 in range(0, n_seeds, nseeds_b):
            with h5py.File(filename, 'r') as hf:
                block = np.array(hf["DTW_matrix"][b1:b1 + nseeds_b,
                                                  b2:b2 + nseeds_b])
                max_d_block = np.nanmax(block[block != np.inf])
                if max_d_block > DTW_max_d:
                    DTW_max_d = max_d_block

    #######################
    # SIMILARITY ANALYSIS #
    #######################
    if similarity:

        simi_high = kwargs.get('simi_high', 1)  # high similarity measure
        simi_decr = kwargs.get('simi_decr',
                               0.001)  # decrese value of similarity measure

        min_c_vs_c = np.zeros((len(class_int_mask), len(class_int_mask) - 1))
        max_c_vs_c = np.zeros((len(class_int_mask), len(class_int_mask) - 1))
        mean_c_vs_c = np.zeros((len(class_int_mask), len(class_int_mask) - 1))
        simi_low = np.zeros((len(class_int_mask)))

        for i, nc in enumerate(class_int_mask):
            c_r = np.delete(class_int_mask, i).tolist()
            for n, nc1 in enumerate(c_r):
                simi_c_W, simi_c_C = load_block_DTW_multi(
                    seed_class_mask, DTW_max_d, nc, nc1, savepath)

                min_c_s = np.zeros((n_seeds_c[nc - 1]))
                max_c_s = np.zeros((n_seeds_c[nc - 1]))
                for nsc in range(n_seeds_c[nc - 1]):
                    simi_c_C_s = simi_c_C[:, nsc]
                    simi_c_C_s = simi_c_C_s[~np.isnan(simi_c_C_s)]
                    simi_c_C_s = sorted(simi_c_C_s, reverse=True)
                    simi_c_C_s = simi_c_C_s[0:math.ceil(n_seeds_c[nc - 1] *
                                                        min_perc_samp_mod *
                                                        min_perc_samp)]
                    simi_c_W_s = simi_c_W[:, nsc]
                    simi_c_W_s = sorted(simi_c_W_s, reverse=True)
                    simi_c_W_s = simi_c_W_s[0:math.ceil(n_seeds_c[nc - 1] *
                                                        min_perc_samp_mod *
                                                        min_perc_samp)]
                    pd_C_mu, pd_C_sigma = scipy.stats.distributions.norm.fit(
                        simi_c_C_s)
                    pd_W_mu, pd_W_sigma = scipy.stats.distributions.norm.fit(
                        simi_c_W_s)
                    if pd_C_mu <= pd_W_mu:
                        min_c_s[nsc] = np.nan
                    else:
                        a = scipy.stats.norm(pd_C_mu, pd_C_sigma).pdf(
                            np.arange(0, 1, simi_decr))
                        b = scipy.stats.norm(pd_W_mu, pd_W_sigma).pdf(
                            np.arange(0, 1, simi_decr))
                        for int_mu in np.int64(
                                np.arange(np.floor(pd_W_mu * (1 / simi_decr)),
                                          (math.ceil(pd_C_mu *
                                                     (1 / simi_decr)) + 1),
                                          1000 * simi_decr)):
                            if (round(b[int_mu - 1], 1) -
                                    round(a[int_mu - 1], 1) <= 0):
                                min_c_s[nsc] = int_mu * simi_decr
                                break
                            else:
                                min_c_s[nsc] = np.nan

                        for int_mu in np.flipud(
                                np.int64(
                                    np.arange(
                                        np.floor(pd_W_mu * (1 / simi_decr)),
                                        (math.ceil(pd_C_mu *
                                                   (1 / simi_decr)) + 1),
                                        1000 * simi_decr))):
                            if (round(a[int_mu - 1], 1) -
                                    round(b[int_mu - 1], 1) <= 0):
                                max_c_s[nsc] = int_mu * simi_decr
                                break
                            else:
                                max_c_s[nsc] = np.nan

                min_c_vs_c[i, n] = np.mean(min_c_s[~np.isnan(min_c_s)])
                max_c_vs_c[i, n] = np.mean(max_c_s[~np.isnan(max_c_s)])
                mean_c_vs_c[i, n] = min_c_vs_c[
                    i, n]  #mean([min_c_vs_c(nc,nc1) max_c_vs_c(nc,nc1)])

            simi_low[i] = np.max(mean_c_vs_c[i, :])

        np.save(fm.joinpath(savepath, "simi_low.npy"), simi_low)

    ###############################
    # CLASS PROTOTYPES GENERATION #
    ###############################
    if classprototypes:

        pass_table = np.zeros(n_classes)  # array of pass/no pass
        models_C = [None] * 9  # variable that contains the models seeds
        used_models = np.zeros(
            n_classes)  # array of number of model used per class
        used_samples_perc = np.zeros(
            n_classes)  # array of used samples per class
        used_simi = np.zeros(n_classes)  # array of used similarity per class

        for i, nc in enumerate(class_int_mask):
            max_s = 1  # set max similarity = 1
            min_s = 0  #simi_low(nc);   # set min similarity

            while pass_table[nc - 1] == 0:
                _, dist_simi_c = load_block_DTW_multi(seed_class_mask,
                                                      DTW_max_d, nc, nc,
                                                      savepath)

                count_simi_c = (
                    dist_simi_c > max_s
                )  # check class seed with a similarity major then the threshold
                mean_simi_c = np.empty(
                    (n_seeds_c[nc - 1]
                     )) * np.nan  # initializate the similarity mean value

                # compute the mean similarity value per seed for each accepted other seed
                for nsc in range(n_seeds_c[nc - 1]):
                    mean_simi_c[nsc] = np.mean(dist_simi_c[count_simi_c[:,
                                                                        nsc],
                                                           nsc])

                # form a matrix with [seed ID | number of accepted seeds | mean similarity for accepted seeds]
                simi_order = np.column_stack([
                    np.arange(0, n_seeds_c[nc - 1], 1),
                    np.sum(count_simi_c, axis=0), mean_simi_c
                ])

                # order the seeds
                simi_order = simi_order[np.argsort(-simi_order[:, 0])]
                simi_order = np.array(
                    simi_order[np.argsort(-simi_order[:, 0])], dtype=int)
                #simi_order = sorted(simi_order, key=lambda x : x[0], reverse=True)

                models = []  # initialize the models

                for nsc in range(n_seeds_c[nc - 1]):
                    n_mod = len(models)  #number of exist models

                    if n_mod == 0:  # if the number of models is zero, just insert the initial seed
                        models.append(simi_order[nsc, 0])

                    else:  # else check if any model can accept the new seed
                        simi = np.zeros(
                            (n_mod, 3))  #initialize the similarity matrix

                        # for each model check if all seed can accept the new one
                        for nm in range(n_mod):
                            seed_int = models[nm]  # get seed ID interval
                            # form a matrix with [model ID | acceptance value | mean similarity between new seed and model seeds]
                            simi[nm, :] = [
                                nm,
                                np.sum((dist_simi_c[simi_order[nsc, 0],
                                                    seed_int] > max_s) * 1) >=
                                (np.ceil(np.size(seed_int) * 1)),
                                np.mean(dist_simi_c[simi_order[nsc, 0],
                                                    seed_int])
                            ]

                        # sort the similarity matrix to get the most similar model
                        simi = np.array(simi[np.argsort(-simi[:, 2])],
                                        dtype=int)

                        if simi[0,
                                1] == 1:  # if the first model can accept the new seed, insert it
                            models[simi[0, 0]] = list(
                                flatten(
                                    [models[simi[0, 0]], simi_order[nsc, 0]]))

                        else:  # otherwise create a new model and insert the seed
                            models.append(simi_order[nsc, 0])

                n_mod = np.size(models, 0)  # get number of models
                # delete models with a percentage of seed lower than the threshold
                for nm in range(n_mod):
                    if np.size(models[nm]) < math.ceil(
                            n_seeds_c[nc - 1] * min_perc_samp_mod):
                        models[nm] = []

                models = list(filter(None, models))

                u_models = len(models)  # get number of used models
                u_samples = np.zeros(
                    u_models)  # initialized the percentage of used seeds
                # compute the percentage of used seeds
                for um in range(u_models):
                    u_samples[um] = np.size(models[um])
                u_samples = (np.sum(u_samples)) / (n_seeds_c[nc - 1])

                # if the pass condition are respected update the output matrixes
                if ((u_models <= max_mod_class)
                        and (bool(u_samples >= min_perc_samp))):
                    pass_table[nc - 1] = 1
                    models_C[nc - 1] = models
                    used_models[nc - 1] = u_models
                    used_samples_perc[nc - 1] = u_samples
                    used_simi[nc - 1] = max_s
                else:
                    if ((max_s > min_s) and (max_s > simi_decr)
                        ):  # otherwise decrease the similarity threshold
                        max_s = max_s - simi_decr
                        print(max_s)
                    else:  # or if not possible put in the pass table a false value
                        pass_table[nc - 1] = 2

        # class prototypes creation
        models = [[[] for _ in range(len(n_features))]
                  for _ in range(n_classes)]
        for nc in (class_int_mask):
            for nb_o, nb in enumerate(n_features):
                n_mod = np.size(models_C[nc - 1])
                Seeds_FR, Seeds_F = load_Seeds_FR(tile, nb, col_DATA, **kwargs)
                m1 = Seeds_F[:, col_nCLASS] == nc
                m2 = Seeds_F[:, col_nBAND] == nb
                m3 = np.logical_and(m1, m2)
                TABLE_cb = Seeds_FR[m3, :]
                for nm in range(n_mod):
                    TABLE_cbm = TABLE_cb[models_C[nc - 1][nm], :]
                    traj = np.mean(TABLE_cbm, 0)
                    models[nc - 1][nb_o].append(traj)

        # prototypes vs samples
        _, col = Seeds_FR.shape
        Traj1 = np.zeros((len(n_features), col))
        sampleVSmodels = np.zeros((n_seeds, n_classes + 3))

        for ns in range(n_seeds):
            for n, nb in enumerate(n_features):
                Seeds_FR, Seeds_F = load_Seeds_FR(tile, nb, col_DATA, **kwargs)
                Traj1[n, :] = Seeds_FR[ns, :]

            sample_simi = [ns, Seeds_F[ns, col_nCLASS], 0]
            for nc in (class_int):
                if nc == 0:
                    max_simi = 0
                else:
                    n_mod = len(models[nc - 1])
                    max_simi = 0
                    for nm in range(n_mod):
                        Traj2 = models[nc - 1][nm]
                        simi = ((DTW_max_d - distance_fast(
                            Traj1, Traj2, max_step=DTW_max_samp)) / DTW_max_d)
                        max_simi = np.max([max_simi, simi])

                sample_simi.append(max_simi)

            max_v = max(sample_simi[3:])
            max_p = sample_simi[3:].index(max_v)
            sample_simi[2] = max_p + 1
            sampleVSmodels[ns, :] = sample_simi

        #confusion matrix between training samples and prototypes
        CM_S = confusion_matrix(sampleVSmodels[:, 1], sampleVSmodels[:, 2])
Пример #5
0
def manager(tilename, **kwargs):
    #SETUP DEFAULT OPTIONS
    info = kwargs.get('info', True)
    blocksize = kwargs.get('blocksize', 200)
    mappath = kwargs.get('mappath', None)

    #PATHS
    loadpath = fm.check_folder(kwargs.get('savepath', None), 'Features')
    savepath = fm.check_folder(kwargs.get('savepath', None), 'NDI_TimeSeries')
    maindir = kwargs.get('maindir', None)
    temppath = fm.joinpath(maindir, 'numpy', tilename)

    #GET IMAGE INFO
    fn = [f for f in os.listdir(loadpath) if f.endswith('.tif')]
    if len(fn) > 0:
        img = fm.readGeoTIFFD(fm.joinpath(loadpath, fn[0]), metadata=False)
        height, width, totfeatures = img.shape
    else:
        raise IOError('Unable to find input data!')

    #LOAD CLASSIFICATION MAP
    if mappath is not None:
        classmap = fm.readGeoTIFFD(mappath, metadata=False)
    else:
        classmap = np.empty(heigth, width)

    #ALLOC VARIABLES
    npixels = blocksize * blocksize
    rects = np.empty((npixels, 368))
    mse = np.empty((npixels, 4))

    #LOOP THROUGH FEATURES
    for feature in range(totfeatures):
        if info:
            print('Reconstructing feature %i/%i...' %
                  ((feature + 1), totfeatures),
                  end='\r')

        folder = 'NDI' + str(feature + 1)
        path = fm.check_folder(savepath, folder)

        #FOR EACH BLOCK POSITION
        for i in range(0, width, blocksize):
            for j in range(0, height, blocksize):

                matr, mask, days = loadts_block(i, j, feature, loadpath,
                                                temppath, **kwargs)

                counter = Value('i', 0)
                corecount = int(os.cpu_count() / 2 -
                                1)  #half to account for virtual cores

                p = Pool(corecount,
                         initializer=counterinit,
                         initargs=(counter, ))
                results = p.map(
                    partial(parallel_manager,
                            matr=matr,
                            mask=mask,
                            days=days,
                            blocksize=blocksize), range(npixels))
                p.close()
                p.join()

                for npx in range(npixels):
                    row, col = divmod(npx, blocksize)
                    row = row + i
                    col = col + j

                    rects[npx, 0] = width * row + col
                    rects[npx, 1] = classmap[row, col]
                    rects[npx, 2] = feature + 1
                    mse[npx, 0] = width * row + col
                    mse[npx, 1] = classmap[row, col]
                    mse[npx, 2] = feature + 1

                    rects[npx, 3:] = results[npx][0]
                    mse[npx, 3] = results[npx][1]

                filename = fm.joinpath(path, 'ts.h5')
                if not os.path.isfile(filename):
                    with h5py.File(filename, 'w') as hf:
                        hf.create_dataset("ts",
                                          data=rects,
                                          chunks=True,
                                          maxshape=(None, rects.shape[1]))
                else:
                    with h5py.File(filename, 'a') as hf:
                        hf["ts"].resize((hf["ts"].shape[0] + rects.shape[0]),
                                        axis=0)
                        hf["ts"][-rects.shape[0]:] = rects

                filename = fm.joinpath(path, 'mse.h5')
                if not os.path.isfile(filename):
                    with h5py.File(filename, 'w') as hf:
                        hf.create_dataset("mse",
                                          data=mse,
                                          chunks=True,
                                          maxshape=(None, mse.shape[1]))
                else:
                    with h5py.File(filename, 'a') as hf:
                        hf["mse"].resize((hf["mse"].shape[0] + mse.shape[0]),
                                         axis=0)
                        hf["mse"][-mse.shape[0]:] = mse