Пример #1
0
        per_process_gpu_memory_fraction=0.8,
        allow_growth=True,
    )
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                          allow_soft_placement=True)) as sess:
        global_step = slim.create_global_step()

        ## data
        image, ih, iw, gt_boxes, gt_masks, num_instances, img_id = \
          coco.read('./data/coco/records/coco_train2014_00000-of-00040.tfrecord')
        with tf.control_dependencies([image, gt_boxes, gt_masks]):
            image, gt_boxes, gt_masks = coco_preprocess.preprocess_image(
                image, gt_boxes, gt_masks, is_training=True)

        ##  network
        with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=0.0001)):
            logits, end_points = resnet50(image, 1000, is_training=False)
        end_points['inputs'] = image

        for x in sorted(end_points.keys()):
            print(x, end_points[x].name, end_points[x].shape)

        pyramid = pyramid_network.build_pyramid('resnet50', end_points)
        # for p in pyramid:
        #   print (p, pyramid[p])

        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        for p in pyramid:
            summaries.add(tf.summary.histogram('pyramid/hist/' + p,
                                               pyramid[p]))
            summaries.add(
Пример #2
0
def deeplabv3(inputs, num_classes, layer_depth=50, is_training=True):
    scope = 'resnet{}'.format(layer_depth)
    with tf.variable_scope(scope, [inputs]) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope(resnet_arg_scope()):
            with slim.arg_scope([slim.conv2d, bottleneck],
                                outputs_collections=end_points_collection):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

                    with tf.variable_scope('block1', [net]) as sc:
                        base_depth = 64
                        for i in range(2):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        with tf.variable_scope('unit_3', values=[net]):
                            net = bottleneck(net,
                                             depth=base_depth * 4,
                                             depth_bottleneck=base_depth,
                                             stride=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block2', [net]) as sc:
                        base_depth = 128
                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        with tf.variable_scope('unit_4', values=[net]):
                            net = bottleneck(net,
                                             depth=base_depth * 4,
                                             depth_bottleneck=base_depth,
                                             stride=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block3', [net]) as sc:
                        base_depth = 256

                        num_units = 6
                        if layer_depth == 101:
                            num_units = 23
                        elif layer_depth == 152:
                            num_units = 36

                        for i in range(num_units):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block4', [net]) as sc:
                        base_depth = 512

                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1,
                                                 rate=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block5', [net]) as sc:
                        base_depth = 512

                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck_hdc(
                                    net,
                                    depth=base_depth * 4,
                                    depth_bottleneck=base_depth,
                                    stride=1,
                                    rate=4)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block6', [net]) as sc:
                        base_depth = 512

                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck_hdc(
                                    net,
                                    depth=base_depth * 4,
                                    depth_bottleneck=base_depth,
                                    stride=1,
                                    rate=8)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block7', [net]) as sc:
                        base_depth = 512

                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck_hdc(
                                    net,
                                    depth=base_depth * 4,
                                    depth_bottleneck=base_depth,
                                    stride=1,
                                    rate=16)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('aspp', [net]) as sc:
                        aspp_list = []
                        branch_1 = slim.conv2d(net,
                                               256, [1, 1],
                                               stride=1,
                                               scope='1x1conv')
                        branch_1 = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, branch_1)
                        aspp_list.append(branch_1)

                        for i in range(3):
                            branch_2 = slim.conv2d(net,
                                                   256, [3, 3],
                                                   stride=1,
                                                   rate=6 * (i + 1),
                                                   scope='rate{}'.format(
                                                       6 * (i + 1)))
                            branch_2 = slim.utils.collect_named_outputs(
                                end_points_collection, sc.name, branch_2)
                            aspp_list.append(branch_2)

                        aspp = tf.add_n(aspp_list)
                        aspp = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, aspp)

                    with tf.variable_scope('img_pool', [net]) as sc:
                        """Image Pooling
            See ParseNet: Looking Wider to See Better
            """
                        pooled = tf.reduce_mean(net, [1, 2],
                                                name='avg_pool',
                                                keep_dims=True)
                        pooled = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, pooled)

                        pooled = slim.conv2d(pooled,
                                             256, [1, 1],
                                             stride=1,
                                             scope='1x1conv')
                        pooled = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, pooled)

                        pooled = tf.image.resize_bilinear(
                            pooled,
                            tf.shape(net)[1:3])
                        pooled = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, pooled)

                    with tf.variable_scope('fusion', [aspp, pooled]) as sc:
                        net = tf.concat([aspp, pooled], 3)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                        net = slim.conv2d(net,
                                          256, [1, 1],
                                          stride=1,
                                          scope='1x1conv')
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    net = slim.conv2d(net,
                                      num_classes, [1, 1],
                                      stride=1,
                                      activation_fn=None,
                                      scope='logits')
                    net = slim.utils.collect_named_outputs(
                        end_points_collection, sc.name, net)

                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)

                    return net, end_points
Пример #3
0
def deeplabv3(inputs,
              num_classes,
              depth=50,
              aspp=True,
              reuse=None,
              is_training=True):
  """DeepLabV3
  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The number of layers of the ResNet.
    aspp: Whether to use ASPP module, if True, will use 4 blocks with 
      multi_grid=(1,2,4), if False, will use 7 blocks with multi_grid=(1,2,1).
    reuse: Whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
    end_points: A dictionary from components of the network to the 
      corresponding activation.
  """
  if aspp:
    multi_grid = (1,2,4)
  else:
    multi_grid = (1,2,1)
  scope ='resnet{}'.format(depth)
  with tf.variable_scope(scope, [inputs], reuse=reuse) as sc:
    end_points_collection = sc.name + '_end_points'
    with slim.arg_scope(resnet_arg_scope(weight_decay=args.weight_decay, 
      batch_norm_decay=args.bn_weight_decay)):
      with slim.arg_scope([slim.conv2d, bottleneck, bottleneck_hdc],
                          outputs_collections=end_points_collection):
        with slim.arg_scope([slim.batch_norm], is_training=is_training):
          net = inputs
          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

          with tf.variable_scope('block1', [net]) as sc:
            base_depth = 64
            for i in range(2):
              with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                net = bottleneck(net, depth=base_depth * 4, 
                  depth_bottleneck=base_depth, stride=1)
            with tf.variable_scope('unit_3', values=[net]):
              net = bottleneck(net, depth=base_depth * 4, 
                depth_bottleneck=base_depth, stride=2)
            net = slim.utils.collect_named_outputs(end_points_collection, 
              sc.name, net)

          with tf.variable_scope('block2', [net]) as sc:
            base_depth = 128
            for i in range(3):
              with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                net = bottleneck(net, depth=base_depth * 4, 
                  depth_bottleneck=base_depth, stride=1)
            with tf.variable_scope('unit_4', values=[net]):
              net = bottleneck(net, depth=base_depth * 4, 
                depth_bottleneck=base_depth, stride=2)
            net = slim.utils.collect_named_outputs(end_points_collection, 
              sc.name, net)

          with tf.variable_scope('block3', [net]) as sc:
            base_depth = 256

            num_units = 6
            if depth == 101:
              num_units = 23
            elif depth == 152:
              num_units = 36

            for i in range(num_units):
              with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                net = bottleneck(net, depth=base_depth * 4, 
                  depth_bottleneck=base_depth, stride=1)
            net = slim.utils.collect_named_outputs(end_points_collection, 
              sc.name, net)

          with tf.variable_scope('block4', [net]) as sc:
            base_depth = 512

            for i in range(3):
              with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                net = bottleneck_hdc(net, depth=base_depth * 4, 
                  depth_bottleneck=base_depth, stride=1, rate=2, 
                  multi_grid=multi_grid)
            net = slim.utils.collect_named_outputs(end_points_collection, 
              sc.name, net)

          if aspp:
            with tf.variable_scope('aspp', [net]) as sc:
              aspp_list = []
              branch_1 = slim.conv2d(net, 256, [1,1], stride=1, 
                scope='1x1conv')
              branch_1 = slim.utils.collect_named_outputs(
                end_points_collection, sc.name, branch_1)
              aspp_list.append(branch_1)

              for i in range(3):
                branch_2 = slim.conv2d(net, 256, [3,3], stride=1, rate=6*(i+1), scope='rate{}'.format(6*(i+1)))
                branch_2 = slim.utils.collect_named_outputs(end_points_collection, sc.name, branch_2)
                aspp_list.append(branch_2)

              aspp = tf.add_n(aspp_list)
              aspp = slim.utils.collect_named_outputs(end_points_collection, sc.name, aspp)

            with tf.variable_scope('img_pool', [net]) as sc:
              """Image Pooling
              See ParseNet: Looking Wider to See Better
              """
              pooled = tf.reduce_mean(net, [1, 2], name='avg_pool', 
                keep_dims=True)
              pooled = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, pooled)

              pooled = slim.conv2d(pooled, 256, [1,1], stride=1, scope='1x1conv')
              pooled = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, pooled)

              pooled = tf.image.resize_bilinear(pooled, tf.shape(net)[1:3])
              pooled = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, pooled)

            with tf.variable_scope('fusion', [aspp, pooled]) as sc:
              net = tf.concat([aspp, pooled], 3)
              net = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, net)

              net = slim.conv2d(net, 256, [1,1], stride=1, scope='1x1conv')
              net = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, net)
          else:
            with tf.variable_scope('block5', [net]) as sc:
              base_depth = 512

              for i in range(3):
                with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                  net = bottleneck_hdc(net, depth=base_depth * 4, 
                    depth_bottleneck=base_depth, stride=1, rate=4)
              net = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, net)

            with tf.variable_scope('block6', [net]) as sc:
              base_depth = 512

              for i in range(3):
                with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                  net = bottleneck_hdc(net, depth=base_depth * 4, 
                    depth_bottleneck=base_depth, stride=1, rate=8)
              net = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, net)

            with tf.variable_scope('block7', [net]) as sc:
              base_depth = 512

              for i in range(3):
                with tf.variable_scope('unit_%d' % (i + 1), values=[net]):
                  net = bottleneck_hdc(net, depth=base_depth * 4, 
                    depth_bottleneck=base_depth, stride=1, rate=16)
              net = slim.utils.collect_named_outputs(end_points_collection, 
                sc.name, net)

          net = slim.conv2d(net, num_classes, [1,1], stride=1, 
            activation_fn=None, normalizer_fn=None, scope='logits')
          net = slim.utils.collect_named_outputs(end_points_collection, 
            sc.name, net)

          end_points = slim.utils.convert_collection_to_dict(
              end_points_collection)

          return net, end_points
Пример #4
0
with tf.Graph().as_default():
  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8, 
                              allow_growth=True,
                              )
  with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                        allow_soft_placement=True)) as sess:
      global_step = slim.create_global_step()
      
      ## data
      image, ih, iw, gt_boxes, gt_masks, num_instances, img_id = \
        coco.read('./data/coco/records/coco_train2014_00000-of-00040.tfrecord')
      image, gt_boxes, gt_masks = coco_preprocess.preprocess_image(image, gt_boxes, gt_masks, is_training=True)
      
      ##  network
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        logits, end_points = resnet50(image, 1000, is_training=False)
      end_points['inputs'] = image
      
      for x in sorted(end_points.keys()):
        print (x, end_points[x].name, end_points[x].shape)
        
      pyramid = pyramid_network.build_pyramid('resnet50', end_points)
      # for p in pyramid:
      #   print (p, pyramid[p])

      summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
      for p in pyramid:
        summaries.add(tf.summary.histogram('pyramid/hist/' + p, pyramid[p]))
        summaries.add(tf.summary.scalar('pyramid/means/'+ p, tf.reduce_mean(tf.abs(pyramid[p]))))