Пример #1
0
def unpickle_miller_arrays(file_name):
    result = easy_pickle.load(file_name)
    # Python 3 pickle fix
    # =========================================================================
    if sys.version_info.major == 3:
        result = easy_pickle.fix_py2_pickle(result)
    # =========================================================================
    if (isinstance(result, miller.array)):
        return [result]
    result = list(result)
    for miller_array in result:
        if (not isinstance(miller_array, miller.array)):
            return None
    return result
Пример #2
0
def load_db(file_name=None):
    if (file_name is None):
        file_name = libtbx.env.find_in_repositories(
            relative_path="chem_data/polygon_data/all_mvd.pickle",
            test=os.path.isfile)
    assert os.path.isfile(file_name)
    database_dict = easy_pickle.load(file_name)

    # Python 3 pickle fix
    # =========================================================================
    if sys.version_info.major == 3:
        database_dict = easy_pickle.fix_py2_pickle(database_dict)
    # =========================================================================

    return database_dict
Пример #3
0
    def __init__(self, models, log):
        db_path = libtbx.env.find_in_repositories(
            relative_path="chem_data/rama_z/top8000_rama_z_dict.pkl",
            test=os.path.isfile)
        self.log = log
        # this takes ~0.15 seconds, so I don't see a need to cache it somehow.
        self.db = easy_pickle.load(db_path)

        # Python 3 pickle fix
        # =========================================================================
        if sys.version_info.major == 3:
            self.db = easy_pickle.fix_py2_pickle(self.db)
        # =========================================================================

        self.calibration_values = {
            'H': (-0.045355950779513175, 0.1951165524439217),
            'S': (-0.0425581278436754, 0.20068584887814633),
            'L': (-0.018457764754231075, 0.15788374669456848),
            'W': (-0.016806654295023003, 0.12044960331869274)
        }
        self.residue_counts = {"H": 0, "S": 0, "L": 0}
        self.z_score = {"H": None, "S": None, "L": None, 'W': None}
        self.means = {"H": {}, "S": {}, "L": {}}
        self.stds = {"H": {}, "S": {}, "L": {}}

        self.phi_step = 4
        self.psi_step = 4
        self.n_phi_half = 45
        self.n_psi_half = 45

        # this is needed to disable e.g. selection functionality when
        # multiple models are present
        self.n_models = len(models)
        self.res_info = []
        for model in models:
            if model.get_hierarchy().models_size() > 1:
                hierarchy = iotbx.pdb.hierarchy.root()
                m = model.get_hierarchy().models()[0].detached_copy()
                hierarchy.append_model(m)
                asc = hierarchy.atom_selection_cache()
            else:
                hierarchy = model.get_hierarchy()
                asc = model.get_atom_selection_cache()
            sec_str_master_phil = iotbx.phil.parse(sec_str_master_phil_str)
            ss_params = sec_str_master_phil.fetch().extract()
            ss_params.secondary_structure.protein.search_method = "from_ca"
            ss_params.secondary_structure.from_ca_conservative = True

            ssm = ss_manager(
                hierarchy,
                atom_selection_cache=asc,
                geometry_restraints_manager=None,
                sec_str_from_pdb_file=None,
                # params=None,
                params=ss_params.secondary_structure,
                was_initialized=False,
                mon_lib_srv=None,
                verbose=-1,
                log=null_out(),
                # log=sys.stdout,
            )

            filtered_ann = ssm.actual_sec_str.deep_copy()
            filtered_ann.remove_short_annotations(
                helix_min_len=4,
                sheet_min_len=4,
                keep_one_stranded_sheets=True)
            self.helix_sel = asc.selection(
                filtered_ann.overall_helices_selection())
            self.sheet_sel = asc.selection(
                filtered_ann.overall_sheets_selection())

            used_atoms = set()
            for three in generate_protein_threes(hierarchy=hierarchy,
                                                 geometry=None):
                main_residue = three[1]
                phi_psi_atoms = three.get_phi_psi_atoms()
                if phi_psi_atoms is None:
                    continue
                phi_atoms, psi_atoms = phi_psi_atoms
                key = [x.i_seq for x in phi_atoms] + [psi_atoms[-1].i_seq]
                key = "%s" % key
                if key not in used_atoms:
                    phi, psi = three.get_phi_psi_angles()
                    rkey = three.get_ramalyze_key()
                    resname = main_residue.resname
                    ss_type = self._figure_out_ss(three)
                    self.res_info.append(
                        ["", rkey, resname, ss_type, phi, psi])
                    self.residue_counts[ss_type] += 1
                    used_atoms.add(key)
        self.residue_counts["W"] = self.residue_counts[
            "H"] + self.residue_counts["S"] + self.residue_counts["L"]