Пример #1
0
def load_validation_data(setting_path, user_settings):
    settings_feat = common.load_settings(setting_path, 'feature.yml')
    settings_train = common.load_settings(setting_path, 'train.yml')
    settings = dict(settings_feat, **settings_train)
    settings['store'] = user_settings['store']
    train_df, val_df = load_training_data(settings)
    del settings_feat, settings_train
    val_df['npy'] = val_df.apply(lambda row: os.path.join(settings['store'], row.label, 'preprocess', row.path.replace('npz', 'npy')), axis=1)
    val_df['mp3'] = val_df.apply(lambda row: os.path.join(settings['store'], row.label, 'clips', row.path.replace('npz', 'mp3')), axis=1)
    print(val_df.shape)
    print('Columns', val_df.columns)
    return val_df
Пример #2
0
    def __init__(self, settings_path, user_settings):
        """
        1. preprocessor; 2. featurizer; 3. settings; 4. load model; 5. loader
        """
        settings = common.load_settings(settings_path, default_conf_name='preprocess.yml')
        self.preprocessor = preprocessing.AudioPreprocessor(self._apply_user_settings(settings, user_settings))
        del settings

        settings_feature = common.load_settings(settings_path, default_conf_name='feature.yml')
        self.featurizer = featurization.AudioFeature(self._apply_user_settings(settings_feature, user_settings))

        settings_train = common.load_settings(settings_path, default_conf_name='train.yml')
        settings_model = common.load_settings(settings_path, default_conf_name=settings_train['model_conf'])
        settings = dict(settings_train, **settings_model)
        settings.update(settings_feature)
        self.settings = self._apply_user_settings(settings, user_settings)

        # Prepare predictor
        self.model = keras.models.load_model(self.best_model_fname)
        self.loader = lambda mels, start_time=None: self.featurizer.load_sample(mels, window_frames=self.settings['frames'],
                                                                                start_time=start_time, normalize=self.settings['normalize'])
Пример #3
0
def main():
    """
    parse -> load settings -> train_model
    """
    setup_keras()

    args = parse()

    train_settings = common.load_settings(args.settings_path, default_conf_name='train.yml')
    train_settings['store'] = args.store

    feature_settings = common.load_settings(args.settings_path, default_conf_name='feature.yml')
    model_settings = common.load_settings(args.settings_path, default_conf_name=train_settings['model_conf'])

    train_df, val_df = load_training_data(dict(train_settings, **feature_settings))
    assert train_df.shape[0] > val_df.shape[0] * 4.5, f'training data {train_df.shape[0]} should be much larger than validation {val_df.shape[0]}'

    sample_featurizer = AudioFeature(feature_settings)

    if args.load_name:
        model_name = args.load_name
        print('Loading existing model', model_name)
        m = keras.models.load_model(model_name)
    else:
        t = datetime.datetime.now().strftime('%Y%m%d-%H%M')
        model_name = f"model-{model_settings['model']}_hop{feature_settings['hop_length']}_{t}"
        m = models.build(dict(model_settings, **feature_settings))
    m.summary()

    output_dir = os.path.join(args.model_store, model_name)

    print(f"Training model: '{model_name}'", json.dumps(train_settings, indent=1))

    combined_settings = dict(train_settings, **model_settings, **feature_settings)

    h = train_model(output_dir, train_df, val_df,
                    model=m,
                    sample_featurizer=sample_featurizer,
                    settings=combined_settings)
Пример #4
0
def main():
    """
    parse -> load settings -> prepare DataFrame with meta info -> run preprocess
    """
    args = parse()
    settings = common.load_settings(args.settings_path,
                                    default_conf_name='preprocess.yml')
    settings['store'] = args.store
    settings['lang'] = args.lang
    settings['force'] = args.force
    df = prepare_meta_df(settings)
    common.parallelize_dataframe(df,
                                 preprocess_dataframe,
                                 settings,
                                 n_cores=args.jobs)