Пример #1
0
    clfs.append((
        "Lightning-SVRG",
        lightning_clf.SVRGClassifier(alpha=alpha,
                                     eta=step_size,
                                     tol=tol,
                                     loss="log"),
        sag_iter_range,
        [],
        [],
        [],
        [],
    ))
    clfs.append((
        "Lightning-SAG",
        lightning_clf.SAGClassifier(alpha=alpha,
                                    eta=step_size,
                                    tol=tol,
                                    loss="log"),
        sag_iter_range,
        [],
        [],
        [],
        [],
    ))

    # We keep only 200 features, to have a dense dataset,
    # and compare to lightning SAG, which seems incorrect in the sparse case.
    X_csc = X.tocsc()
    nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1]
    X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]]
    X = X.toarray()
    print("dataset: %.3f MB" % (X.nbytes / 1e6))
Пример #2
0
if lightning_clf is not None and not fit_intercept:
    alpha = 1. / C / n_samples
    # compute the same step_size than in LR-sag
    max_squared_sum = get_max_squared_sum(X)
    step_size = get_auto_step_size(max_squared_sum, alpha, "log",
                                   fit_intercept)

    clfs.append(("Lightning-SVRG",
                 lightning_clf.SVRGClassifier(alpha=alpha,
                                              eta=step_size,
                                              tol=tol,
                                              loss="log"), sag_iter_range, [],
                 [], [], []))
    clfs.append(("Lightning-SAG",
                 lightning_clf.SAGClassifier(alpha=alpha,
                                             eta=step_size,
                                             tol=tol,
                                             loss="log"), sag_iter_range, [],
                 [], [], []))

    # We keep only 200 features, to have a dense dataset,
    # and compare to lightning SAG, which seems incorrect in the sparse case.
    X_csc = X.tocsc()
    nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1]
    X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]]
    X = X.toarray()
    print("dataset: %.3f MB" % (X.nbytes / 1e6))

# Split training and testing. Switch train and test subset compared to
# LYRL2004 split, to have a larger training dataset.
n = 23149
X_test = X[:n, :]
Пример #3
0
        classification_binary(
            linear_model.RidgeClassifier(random_state=RANDOM_SEED)),
        classification_binary(linear_model.RidgeClassifierCV()),
        classification_binary(
            linear_model.SGDClassifier(random_state=RANDOM_SEED)),

        # Lightning Linear Classifiers
        classification(light_clf.AdaGradClassifier(random_state=RANDOM_SEED)),
        classification(light_clf.CDClassifier(random_state=RANDOM_SEED)),
        classification(
            light_clf.CDClassifier(
                penalty="l1/l2", multiclass=True, random_state=RANDOM_SEED)),
        classification(light_clf.FistaClassifier()),
        classification(light_clf.FistaClassifier(multiclass=True)),
        classification(light_clf.SAGAClassifier(random_state=RANDOM_SEED)),
        classification(light_clf.SAGClassifier(random_state=RANDOM_SEED)),
        classification(light_clf.SDCAClassifier(random_state=RANDOM_SEED)),
        classification(light_clf.SGDClassifier(random_state=RANDOM_SEED)),
        classification(
            light_clf.SGDClassifier(multiclass=True,
                                    random_state=RANDOM_SEED)),
        classification_binary(
            light_clf.AdaGradClassifier(random_state=RANDOM_SEED)),
        classification_binary(
            light_clf.CDClassifier(random_state=RANDOM_SEED)),
        classification_binary(light_clf.FistaClassifier()),
        classification_binary(
            light_clf.SAGAClassifier(random_state=RANDOM_SEED)),
        classification_binary(
            light_clf.SAGClassifier(random_state=RANDOM_SEED)),
        classification_binary(