def test_fista_regression_simplex(): rng = np.random.RandomState(0) w = project_simplex(rng.rand(10)) X = rng.randn(1000, 10) y = np.dot(X, w) reg = FistaRegressor(penalty="simplex", max_iter=100, verbose=0) reg.fit(X, y) y_pred = reg.predict(X) error = np.sqrt(np.mean((y - y_pred) ** 2)) assert_almost_equal(error, 0.000, 3) assert_true(np.all(reg.coef_ >= 0)) assert_almost_equal(np.sum(reg.coef_), 1.0, 3)
def test_fista_regression_simplex(): rng = np.random.RandomState(0) w = project_simplex(rng.rand(10)) X = rng.randn(1000, 10) y = np.dot(X, w) reg = FistaRegressor(penalty="simplex", max_iter=100, verbose=0) reg.fit(X, y) y_pred = reg.predict(X) error = np.sqrt(np.mean((y - y_pred)**2)) assert_almost_equal(error, 0.000, 3) assert_true(np.all(reg.coef_ >= 0)) assert_almost_equal(np.sum(reg.coef_), 1.0, 3)
def test_fista_regression_l1_ball(): rng = np.random.RandomState(0) alpha = 5.0 w = project_simplex(rng.randn(10), alpha) X = rng.randn(1000, 10) y = np.dot(X, w) reg = FistaRegressor(penalty="l1-ball", alpha=alpha, max_iter=100, verbose=0) reg.fit(X, y) y_pred = reg.predict(X) error = np.sqrt(np.mean((y - y_pred) ** 2)) np.testing.assert_almost_equal(error, 0.000, 3) np.testing.assert_almost_equal(np.sum(np.abs(reg.coef_)), alpha, 3)
def test_fista_regression_l1_ball(): rng = np.random.RandomState(0) alpha = 5.0 w = project_simplex(rng.randn(10), alpha) X = rng.randn(1000, 10) y = np.dot(X, w) reg = FistaRegressor(penalty="l1-ball", alpha=alpha, max_iter=100, verbose=0) reg.fit(X, y) y_pred = reg.predict(X) error = np.sqrt(np.mean((y - y_pred) ** 2)) assert_almost_equal(error, 0.000, 3) assert_almost_equal(np.sum(np.abs(reg.coef_)), alpha, 3)
def test_fista_regression_trace(): rng = np.random.RandomState(0) def _make_data(n_samples, n_features, n_tasks, n_components): W = rng.rand(n_tasks, n_features) - 0.5 U, S, V = svd(W, full_matrices=True) S[n_components:] = 0 S = diagsvd(S, U.shape[0], V.shape[0]) W = np.dot(np.dot(U, S), V) X = rng.rand(n_samples, n_features) - 0.5 Y = np.dot(X, W.T) return X, Y, W X, Y, W = _make_data(200, 50,30, 5) reg = FistaRegressor(max_iter=15, verbose=0) reg.fit(X, Y) Y_pred = reg.predict(X) error = (Y_pred - Y).ravel() error = np.dot(error, error) assert_almost_equal(error, 77.45, 2)
def fit(self, X, y): if self.w is None: self.w = np.ones(X.shape[1]) if self.lam is None: lam_max, lam_min = _get_lam_max_min(X, y, self.eps) self.lambda_path_ = np.logspace(np.log10(lam_max), np.log10(lam_min), self.n_lam) else: self.lambda_path_ = [self.lam] scorer = make_scorer(self.metric) self.coef_path_, self.model_path_, self.score_path_ = [], [], [] for lam_i in self.lambda_path_: # Setup model per_model_n = len(y) * ((self.cv-1) / self.cv) model_i = FistaRegressor( C=1/per_model_n, penalty=_LassoProjection(self.w), alpha=lam_i ) # Get fit data scores_i = cross_val_score( model_i, X, y, scoring=scorer, cv=self.cv, n_jobs=self.n_jobs ) # Fit model model_i.fit(X, y) self.coef_path_.append(model_i.coef_) self.score_path_.append(scores_i.mean()) self.model_path_.append(model_i) self.coef_path_ = np.vstack(self.coef_path_) self.best_index = np.argmin(self.score_path_)
def test_fista_regression(): reg = FistaRegressor(max_iter=100, verbose=0) reg.fit(bin_dense, bin_target) y_pred = np.sign(reg.predict(bin_dense)) assert_almost_equal(np.mean(bin_target == y_pred), 0.985)
def test_fista_regression(bin_dense_train_data): X, y = bin_dense_train_data reg = FistaRegressor(max_iter=100, verbose=0) reg.fit(X, y) y_pred = np.sign(reg.predict(X)) np.testing.assert_almost_equal(np.mean(y == y_pred), 0.985)