def clean(conn, label=None): """ Visualize a sparse adjacency matrix. .. image:: adjacency.png Parameters ---------- conn : array-like, (n,n) or (n,3) or (n,2) Input connectivity data as either a matrix or a list of links. Matrix can be binary or continuous valued. Links should contain either 2 elements per link (source, target), or 3 elements (source, target, value). label : array-like, optional, singleton or (n,) Single integer or array to set colors via groups """ links = parse_links(conn) nodes = parse_nodes(conn) outdict = {'links': links, 'nodes': nodes} outdict = add_property(outdict, label, 'label') return outdict
def clean(x, y, conn, values=None, labels=None,color=None, group=None, colormap=None, size=None): """ Create a node-link graph from spatial points and their connectivity. .. image:: graph.png Parameters ---------- x,y : array-like, each (n,) Input data for nodes (x,y coordinates) conn : array-like, (n,n) or (n,3) or (n,2) Input connectivity data as either a matrix or a list of links. Matrix can be binary or continuous valued. Links should contain either 2 elements per link (source, target), or 3 elements (source, target, value). values : array-like, optional, singleton or (n,) Values to set node colors via a linear scale labels : array-like, optional, (n,) Array of text labels to set tooltips color : array-like, optional, singleton or (n,) or (n,3) Single rgb value or array to set node colors group : array-like, optional, singleton or (n,) Single integer or array to set node colors via group assignment colormap : string Specification of color map, only colorbrewer types supported size : array-like, optional, singleton or (n,) Single size or array to set node sizes tooltips : boolean, optional, default=True Whether to show tooltips zoom : boolean, optional, default=True Whether to allow zooming brush : boolean, optional, default=True Whether to support brushing """ links = parse_links(conn) nodes = vecs_to_points(x, y) outdict = {'links': links, 'nodes': nodes} outdict = add_property(outdict, color, 'color') outdict = add_property(outdict, group, 'group') outdict = add_property(outdict, values, 'values') outdict = add_property(outdict, labels, 'labels') outdict = add_property(outdict, colormap, 'colormap') outdict = add_property(outdict, size, 'size') return outdict
def clean(x, y, conn, color=None, label=None, value=None, colormap=None, size=None, imagedata=None): """ Create a node-link graph from spatial points and their connectivity. .. image:: graph.png Parameters ---------- x,y : array-like, each (n,) Input data for nodes (x,y coordinates) conn : array-like, (n,n) or (n,3) or (n,2) Input connectivity data as either a matrix or a list of links. Matrix can be binary or continuous valued. Links should contain either 2 elements per link (source, target), or 3 elements (source, target, value). color : array-like, optional, singleton or (n,) or (n,3) Single rgb value or array to set node colors label : array-like, optional, singleton or (n,) Single integer or array to set node colors via group labels value : array-like, optional, singleton or (n,) Values to set node colors via a linear scale colormap : string Specification of color map, only colorbrewer types supported size : array-like, optional, singleton or (n,) Single size or array to set node sizes """ links = parse_links(conn) nodes = vecs_to_points(x, y) outdict = {'links': links, 'nodes': nodes} outdict = add_property(outdict, color, 'color') outdict = add_property(outdict, label, 'label') outdict = add_property(outdict, value, 'value') outdict = add_property(outdict, colormap, 'colormap') outdict = add_property(outdict, size, 'size') if imagedata is not None: images = array_to_im(imagedata) outdict['images'] = images return outdict
def clean(conn, group=None, color=None, labels=None): """ Create a circular graph from connectivity data. .. image:: circle.png Parameters ---------- conn : array-like, (n,n) or (n,3) or (n,2) Input connectivity data as either a matrix or a list of links. Matrix can be binary or continuous valued. Links should contain either 2 elements per link (source, target), or 3 elements (source, target, value). group : array-like, optional, (m,n) or (n,) Hierarchical group assignments, where m is the number of groups color : array-like, optional, singleton or (k,3) Single rgb value or array to set colors of top-level group, where k is the number of unique elements in the top-level group labels : array-like, optional, (n,) Array of text labels to label nodes """ links = parse_links(conn) nodes = parse_nodes(conn) outdict = {'links': links, 'nodes': nodes} outdict = add_property(outdict, labels, 'labels') outdict = add_property(outdict, color, 'color') if group is not None: if isinstance(group, ndarray): group = group.tolist() if isinstance(group, list): if not isinstance(group[0], list): if isinstance(group[0], ndarray): group = [g.tolist() for g in group] else: group = [group] else: raise ValueError('group must be list or nested list') outdict['group'] = group return outdict
def clean(conn, color=None, label=None, value=None, colormap=None, size=None): """ Create a force-directed network from connectivity. .. image:: force.png Parameters ---------- conn : array-like, (n,n) or (n,3) or (n,2) Input connectivity data as either a matrix or a list of links. Matrix can be binary or continuous valued. Links should contain either 2 elements per link (source, target), or 3 elements (source, target, value). color : array-like, optional, singleton or (n,3) Single rgb value or array to set node colors label : array-like, optional, singleton or (n,) Single integer or array to set node colors via group labels value : array-like, optional, singleton or (n,) Values to set node colors via a linear scale colormap : string Specification of color map, only colorbrewer types supported size : array-like, optional, singleton or (n,) Single size or array to set node sizes """ links = parse_links(conn) nodes = parse_nodes(conn) outdict = {'links': links, 'nodes': nodes} outdict = add_property(outdict, color, 'color') outdict = add_property(outdict, label, 'label') outdict = add_property(outdict, value, 'value') outdict = add_property(outdict, colormap, 'colormap') outdict = add_property(outdict, size, 'size') return outdict
def clean(conn, labels=None, group=None): """ Visualize a sparse adjacency matrix. .. image:: adjacency.png Parameters ---------- conn : array-like, (n,n) or (n,3) or (n,2) Input connectivity data as either a matrix or a list of links. Matrix can be binary or continuous valued. Links should contain either 2 elements per link (source, target), or 3 elements (source, target, value). labels : array-like, (n,) Text labels for each item (will label rows and columns) group : array-like, optional, singleton or (n,) Single integer or array to set colors via groups sort : str, optional, default='group' What to sort by, options are 'group' | 'degree' numbers : boolean, optional, default=False Whether to show numbers on cells symmetric : boolean, optional, default=True Whether to make links symmetrical """ links = parse_links(conn) nodes = parse_nodes(conn) outdict = {'links': links, 'nodes': nodes} outdict = add_property(outdict, labels, 'labels') outdict = add_property(outdict, group, 'group') return outdict