Пример #1
0
y_test = test_data["ytest"].flatten()
yy_test = np.ones(y_test.shape)
yy_test[y_test == 0] = -1
print "Done!"
sys.stdout.flush()

#############################################################################
# your code for setting up the best SVM classifier for this dataset         #
# Design the training parameters for the SVM.                               #
# What should the learning_rate be? What should C be?                       #
# What should num_iters be? Should X be scaled? Should X be kernelized?     #
#############################################################################
# your experiments below

svm = LinearSVM_twoclass()
svm.theta = np.zeros((X.shape[1],))

it = 2000
lr = 1e-4
print it, " iters"
print "learning rate ", lr

Cvals = [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]  # [0.01] #[0.01,0.03,0.1,0.3,1,3,10,30]
sigma_vals = [0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]  # [0.01] #[0.01,0.03,0.1,0.3,1,3,10,30]

# best_C = 0.05
best_C = 0.05
# best_sigma = 1
best_sigma = 1

best_acc = 0
Пример #2
0
#  Part  2: Training linear SVM                                            #
#  We train a linear SVM on the data set and the plot the learned          #
#  decision boundary                                                       #
############################################################################

############################################################################
# TODO                                                                     #
# You will change this line to vary C.                                     #
############################################################################

C = 1

############################################################################

svm = LinearSVM_twoclass()
svm.theta = np.zeros((XX.shape[1], ))
svm.train(XX, yy, learning_rate=1e-4, C=C, num_iters=50000, verbose=True)

# classify the training data

y_pred = svm.predict(XX)

print "Accuracy on training data = ", metrics.accuracy_score(yy, y_pred)

# visualize the decision boundary

utils.plot_decision_boundary(scaleX, y, svm, 'x1', 'x2', ['neg', 'pos'])
plt.savefig('fig2.pdf')

############################################################################
#  Part  3: Training SVM with a kernel                                     #
Пример #3
0
# Design the training parameters for the SVM.                               #
# What should the learning_rate be? What should C be?                       #
# What should num_iters be? Should X be scaled? Should X be kernelized?     #
#############################################################################
# your experiments below

X_train, X_val, y_train, y_val = train_test_split(X,
                                                  y,
                                                  test_size=0.8,
                                                  random_state=42)

print X_train.shape
print X_val.shape

svm = LinearSVM_twoclass()
svm.theta = np.zeros((X.shape[1], ))
'''
    first select the best gaussian kernelized svm
'''

Cvals = [0.01, 0.03, 0.1, 0.3, 10, 30]
sigma_vals = [0.01, 0.03, 0.1, 0.3, 10, 30]
learning_rates = [1e-4, 1e-3, 1e-2, 1e-1, 1]
iterations = [100, 1000, 10000]

best_acc = 0
for sigma_val in sigma_vals:
    K = np.array([
        utils.gaussian_kernel(x1, x2, sigma_val) for x1 in X_train
        for x2 in X_train
    ]).reshape(X_train.shape[0], X_train.shape[0])