Пример #1
0
    def testRevNetLayerFProp(self):
        with self.session() as sess:
            tf.set_random_seed(321)
            input_1 = tf.random_normal([5, 3], seed=89122)
            input_2 = tf.random_normal([5, 3], seed=19438)
            p = reversible_layers.RevNetLayer.Params()
            p.name = 'revnet_simple'
            p.f_params = layers.FCLayer.Params().Set(input_dim=3, output_dim=3)
            p.g_params = layers.FCLayer.Params().Set(input_dim=3, output_dim=3)
            revnet_layer = p.Instantiate()

            h, _, _ = revnet_layer.FPropDefaultTheta(
                py_utils.NestedMap(split1=input_1, split2=input_2))
            tf.global_variables_initializer().run()
            actual_layer_output = sess.run(h)
            expected_split1 = np.array([[-0.7262997, 0.9276514, -0.20907314],
                                        [-0.7089523, 0.24923629, 2.5001974],
                                        [1.6766014, 0.26847264, -0.2510258],
                                        [0.9629222, -0.57908165, 0.0485389],
                                        [2.7580009, 0.17540382, 1.6282884]],
                                       dtype=np.float32)
            expected_split2 = np.array([[1.1282716, 1.4266306, -0.16530532],
                                        [-0.3836313, 0.04922554, 0.25543338],
                                        [0.03718817, 1.5488712, 2.1594636],
                                        [-2.1252284, 3.2059612, 0.1118355],
                                        [3.4058936, -0.63690275, -0.95291173]],
                                       dtype=np.float32)

            self.assertAllClose(expected_split1, actual_layer_output.split1)
            self.assertAllClose(expected_split2, actual_layer_output.split2)
Пример #2
0
    def testSoftCondLayer(self):
        num_experts = 100
        with self.session(use_gpu=False, graph=tf.Graph()) as sess:
            tf.set_random_seed(24332)
            p = layers.SoftCondLayer.Params().Set(
                name='soft_cond',
                cond_dim=2,
                num_experts=num_experts,
                body=lingvo_layers.FCLayer.Params().Set(input_dim=2,
                                                        output_dim=2))
            l = p.Instantiate()
            x = tf.random_normal(shape=[1, 2, 2])
            y = l.FPropDefaultTheta(x)
            tf.global_variables_initializer().run()
            x_val, y_val, vars_val = sess.run([x, y, l.vars])

            p_nz = layers.SoftCondLayer.Params().Set(
                name='soft_cond_nonzeros',
                cond_dim=2,
                num_experts=num_experts,
                nonzeros_mean=True,
                body=lingvo_layers.FCLayer.Params().Set(input_dim=2,
                                                        output_dim=2))
            l_nz = p_nz.Instantiate()
            x_nz = tf.random_normal(shape=[1, 2, 2])
            y_nz = l_nz.FPropDefaultTheta(x_nz)
            tf.global_variables_initializer().run()
            x_nz_val, y_nz_val, vars_nz_val = sess.run([x_nz, y_nz, l_nz.vars])

        np_val = x_val[0]
        np_nz_val = x_nz_val[0]
        taks_weight = np.exp(-1.0 * np.dot(np.mean(np_val, 0), vars_val.w))
        taks_weight = 1.0 / (1.0 + taks_weight)
        nzs = np.count_nonzero(np_nz_val, 0).astype('float32') + 1e-10
        taks_weight_nz = np.exp(
            -1.0 * np.dot(np.sum(np_nz_val, 0) / nzs, vars_nz_val.w))
        taks_weight_nz = 1.0 / (1.0 + taks_weight_nz)
        weighted_weight = np.einsum('i,ijk->jk', taks_weight, vars_val.body.w)
        weighted_weight_nz = np.einsum('i,ijk->jk', taks_weight_nz,
                                       vars_nz_val.body.w)
        weighted_bias = np.einsum('i,ij->j', taks_weight, vars_val.body.b)
        weighted_bias_nz = np.einsum('i,ij->j', taks_weight_nz,
                                     vars_nz_val.body.b)
        np_val_out = np.maximum(
            0,
            np.dot(np_val, weighted_weight) + weighted_bias)
        np_val_out_nz = np.maximum(
            0,
            np.dot(np_nz_val, weighted_weight_nz) + weighted_bias_nz)
        self.assertAllClose(np_val_out, y_val[0])
        self.assertAllClose(np_val_out_nz, y_nz_val[0])
Пример #3
0
 def _ForwardPass(self, p):
     tf.set_random_seed(8372749040)
     stt_enc = encoder.AsrEncoder(p)
     batch = py_utils.NestedMap()
     batch.src_inputs = tf.random_normal([2, 20, 16, 3], seed=92837472)
     batch.paddings = tf.zeros([2, 20])
     return stt_enc.FPropDefaultTheta(batch)
Пример #4
0
    def _testDecoderFPropFloatHelper(self,
                                     func_inline=False,
                                     num_decoder_layers=1,
                                     target_seq_len=5,
                                     residual_start=0):
        """Computes decoder from params and computes loss with random inputs."""
        cluster = cluster_factory.ForTestingWorker(add_summary=True)
        config = tf.ConfigProto(graph_options=tf.GraphOptions(
            optimizer_options=tf.OptimizerOptions(
                do_function_inlining=func_inline)))
        with cluster, self.session(use_gpu=False, config=config) as sess:
            tf.set_random_seed(8372749040)
            vn_config = py_utils.VariationalNoiseParams(None, False, False)
            p = self._DecoderParams(vn_config)
            p.rnn_layers = num_decoder_layers
            p.residual_start = residual_start
            p.target_seq_len = target_seq_len
            dec = p.Instantiate()
            src_seq_len = 5
            src_enc = tf.random_normal([src_seq_len, 2, 8], seed=9283748)
            src_enc_padding = tf.constant(
                [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
                dtype=tf.float32)
            encoder_outputs = py_utils.NestedMap(encoded=src_enc,
                                                 padding=src_enc_padding)
            target_ids = tf.transpose(
                tf.constant([[0, 1, 2, 3], [1, 2, 3, 4], [10, 11, 12, 15],
                             [5, 6, 7, 8], [10, 5, 2, 5]],
                            dtype=tf.int32))
            target_labels = tf.transpose(
                tf.constant([[0, 1, 2, 3], [1, 2, 3, 4], [10, 11, 12, 13],
                             [5, 7, 8, 10], [10, 5, 2, 4]],
                            dtype=tf.int32))
            target_paddings = tf.transpose(
                tf.constant([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0],
                             [0, 1, 0, 0], [1, 1, 1, 1]],
                            dtype=tf.float32))
            target_transcripts = tf.constant(
                ['abcd', 'bcde', 'klmp', 'fghi', 'kfcf'])
            target_weights = 1.0 - target_paddings
            targets = py_utils.NestedMap({
                'ids': target_ids,
                'labels': target_labels,
                'weights': target_weights,
                'paddings': target_paddings,
                'transcripts': target_transcripts,
            })
            metrics = dec.FPropDefaultTheta(encoder_outputs, targets).metrics
            loss = metrics['loss'][0]
            correct_predicts = metrics['fraction_of_correct_next_step_preds'][
                0]
            summaries = tf.summary.merge(
                tf.get_collection(tf.GraphKeys.SUMMARIES))

            tf.global_variables_initializer().run()
            loss_v, _ = sess.run([loss, correct_predicts])

            summaries.eval()

            return loss_v
Пример #5
0
    def testUnarySequentialLayer(self):
        g = tf.Graph()
        with g.as_default():
            tf.set_random_seed(24332)
            p = layers.UnarySequentialLayer.Params().Set(
                name='seq',
                sub=[
                    lingvo_layers.FCLayer.Params().Set(name='foo',
                                                       input_dim=32,
                                                       output_dim=8),
                    lingvo_layers.FCLayer.Params().Set(name='bar',
                                                       input_dim=8,
                                                       output_dim=8),
                    lingvo_layers.FCLayer.Params().Set(name='baz',
                                                       input_dim=8,
                                                       output_dim=32),
                    lingvo_layers.DropoutLayer.Params().Set(name='dropout',
                                                            keep_prob=0.5)
                ])
            p.is_eval = True
            l = p.Instantiate()
            x = tf.random_normal(shape=[2, 32])
            y = l.FPropDefaultTheta(x)
            l.vars.Transform(lambda x: x.shape).VLog(0, 'vars: ')

        with self.session(graph=g) as sess:
            sess.run(tf.global_variables_initializer())
            x_val, y_val, w = sess.run([x, y, l.vars])

        act = x_val
        # relu(act \dot w + b)
        act = np.maximum(0, np.dot(act, w.foo.w) + w.foo.b)
        act = np.maximum(0, np.dot(act, w.bar.w) + w.bar.b)
        act = np.maximum(0, np.dot(act, w.baz.w) + w.baz.b)
        self.assertAllClose(act, y_val)
    def _Sources(self):
        p = self.params
        if p.cur_iter_in_seed:
            self._cur_iter += 1

        if p.integer_source_max:
            inputs = tf.random_uniform(p.source_shape,
                                       maxval=p.integer_source_max,
                                       dtype=tf.int32,
                                       seed=p.random_seed +
                                       1000 * self._cur_iter)
        elif p.float_source_max:
            inputs = tf.random_uniform(p.source_shape,
                                       maxval=p.float_source_max,
                                       seed=p.random_seed +
                                       1000 * self._cur_iter)
        else:
            inputs = tf.random_normal(p.source_shape,
                                      seed=p.random_seed +
                                      1000 * self._cur_iter)

        paddings = tf.cast(
            tf.cumsum(
                tf.random_uniform(p.source_shape[:2],
                                  seed=p.random_seed + 1001 * self._cur_iter),
                axis=1) > 0.5 * p.source_shape[1], tf.float32)

        paddings = self._check_paddings(paddings)

        return inputs, paddings
Пример #7
0
  def testParallelRepeatLayerLayer(self):
    repeat = 100
    body_p = layers.SequentialLayer.Params().Set(
        name='body',
        sub=[
            layers.LinearLayer.Params().Set(
                name='ln1', input_dims=2, output_dims=4),
            layers.FnLayer.Params().Set(
                name='relu',
                fn=tf.nn.relu,
                fn_meta=lambda x: py_utils.NestedMap(flops=1, out_shapes=(x,))),
            layers.LinearLayer.Params().Set(
                name='ln2', input_dims=4, output_dims=2)
        ])
    with self.session(use_gpu=False, graph=tf.Graph()) as sess:
      tf.set_random_seed(24332)
      p = layers.ParallelRepeatLayer.Params().Set(
          name='moe', repeat=repeat, body=body_p)
      l = p.Instantiate()
      x = tf.random_normal(shape=[repeat, 2, 2])
      y = l.FPropDefaultTheta(x)
      tf.global_variables_initializer().run()
      x_val, y_val, w = sess.run([x, y, l.vars])

    np_val = []

    for i in range(repeat):
      # relu(act \dot w_1) \dot w_2
      np_val.append(
          np.dot(
              np.maximum(0, np.dot(x_val[i], w.body.ln1.w[i])),
              w.body.ln2.w[i]))
    np_val = np.stack(np_val)
    self.assertAllClose(np_val, y_val)
def GetBeamSearchHelperResults(sess, num_hyps_per_beam):
    np.random.seed(9384758)
    tf.set_random_seed(8274758)
    vocab_size = 12
    src_len = 5
    tgt_len = 7
    src_batch_size = 2
    tgt_batch_size = src_batch_size * num_hyps_per_beam
    p = beam_search_helper.BeamSearchHelper.Params().Set(
        name='bsh', target_seq_len=tgt_len)
    bs_helper = p.Instantiate()

    def InitBeamSearchState(unused_theta, unused_encoder_outputs,
                            unused_num_hyps_per_beam):
        atten_probs = tf.constant(np.random.normal(size=(tgt_batch_size,
                                                         src_len)),
                                  dtype=tf.float32)
        return (py_utils.NestedMap({
            'log_probs':
            tf.zeros([tgt_batch_size, vocab_size]),
            'atten_probs':
            atten_probs,
        }), py_utils.NestedMap({'atten_probs': atten_probs}))

    def PreBeamSearchStepCallback(unused_theta, unused_encoder_outputs,
                                  unused_step_ids, states,
                                  unused_num_hyps_per_beam):
        atten_probs = tf.identity(states.atten_probs)
        logits = tf.random_normal([tgt_batch_size, vocab_size], seed=8273747)
        return (py_utils.NestedMap({
            'atten_probs': atten_probs,
            'log_probs': logits
        }), states)

    def PostBeamSearchStepCallback(unused_theta, unused_encoder_outputs,
                                   unused_new_step_ids, states):
        return states

    src_enc = tf.random_normal([src_len, src_batch_size, 8], seed=982774838)
    src_enc_padding = tf.constant(
        [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
        dtype=tf.float32)
    encoder_outputs = py_utils.NestedMap(encoded=src_enc,
                                         padding=src_enc_padding)

    theta = py_utils.NestedMap()
    decoder_output = bs_helper.BeamSearchDecode(theta, encoder_outputs,
                                                num_hyps_per_beam,
                                                InitBeamSearchState,
                                                PreBeamSearchStepCallback,
                                                PostBeamSearchStepCallback)

    topk_ids, topk_lens, topk_scores = sess.run([
        decoder_output.topk_ids, decoder_output.topk_lens,
        decoder_output.topk_scores
    ])
    return topk_ids, topk_lens, topk_scores
Пример #9
0
 def PreBeamSearchStepCallback(unused_theta, unused_encoder_outputs,
                               unused_step_ids, states,
                               unused_num_hyps_per_beam):
     atten_probs = tf.identity(states.atten_probs)
     logits = tf.random_normal([tgt_batch_size, vocab_size], seed=8273747)
     return (py_utils.NestedMap({
         'atten_probs': atten_probs,
         'log_probs': logits
     }), states)
Пример #10
0
    def testDecoderWithOrientedPerClassNMS(self):
        batch_size = 4
        num_preds = 8
        num_classes = 10

        # An example of setting the score threshold high and IOU threshold low
        # for classes we don't care about
        score_threshold = [1.0] * num_classes
        score_threshold[1] = 0.05

        nms_iou_threshold = [0.0] * num_classes
        nms_iou_threshold[1] = 0.5

        with tf.Graph().as_default():
            tf.set_random_seed(12345)
            predicted_bboxes = tf.random_normal([batch_size, num_preds, 7])
            classification_scores = tf.random_uniform(
                [batch_size, num_preds, num_classes], minval=0, maxval=1)

            bboxes, bbox_scores, valid_mask = detection_decoder.DecodeWithNMS(
                predicted_bboxes,
                classification_scores,
                nms_iou_threshold=nms_iou_threshold,
                score_threshold=score_threshold,
                use_oriented_per_class_nms=True)

            with self.session() as sess:
                outputs = sess.run([
                    predicted_bboxes, classification_scores, bboxes,
                    bbox_scores, valid_mask
                ])
                (input_bboxes, input_scores, output_bboxes, output_scores,
                 mask) = outputs

                self.assertEqual((batch_size, num_preds, 7),
                                 input_bboxes.shape)
                self.assertEqual((batch_size, num_classes, num_preds, 7),
                                 output_bboxes.shape)
                self.assertEqual((batch_size, num_preds, num_classes),
                                 input_scores.shape)
                self.assertEqual((batch_size, num_classes, num_preds),
                                 output_scores.shape)
                self.assertEqual((batch_size, num_classes, num_preds),
                                 mask.shape)

                # Assert that NMS did some kind of filtering for each class
                for cls_idx in range(num_classes):
                    self.assertEqual(mask[:, cls_idx, :].sum(),
                                     (input_scores[:, :, cls_idx] >
                                      score_threshold[cls_idx]).sum())
                    self.assertEqual(mask[:, cls_idx, :].sum(),
                                     (output_scores[:, cls_idx, :] >
                                      score_threshold[cls_idx]).sum())
Пример #11
0
 def testCreateMask2D(self):
     width = 10
     height = 20
     with self.cached_session():
         weights = tf.Variable(tf.random_normal([width, height], stddev=1),
                               name="weights")
         masked_weights = pruning.apply_mask(weights,
                                             tf.get_variable_scope())
         tf.global_variables_initializer().run()
         weights_val = weights.eval()
         masked_weights_val = masked_weights.eval()
         self.assertAllEqual(weights_val, masked_weights_val)
Пример #12
0
 def testEmptySequentialLayerFPropMeta(self):
   g = tf.Graph()
   with g.as_default():
     p = layers.SequentialLayer.Params().Set(name='seq')
     l = p.Instantiate()
     x = py_utils.NestedMap(val=tf.random_normal(shape=[2, 32]))
     y = l.FPropDefaultTheta(x)
     self.assertIsInstance(y.val, tf.Tensor)
     y_shape = l.FPropMeta(
         p, py_utils.Transform(lambda t: tshape.Shape(t.shape),
                               x)).out_shapes[0]
     self.assertEqual(y.val.shape.as_list(),
                      y_shape.val.ToTensorShape().as_list())
Пример #13
0
    def testEmptySequentialLayer(self):
        g = tf.Graph()
        with g.as_default():
            tf.set_random_seed(24332)
            p = layers.SequentialLayer.Params().Set(name='seq')
            l = p.Instantiate()
            x = tf.random_normal(shape=[2, 32])
            y = l.FPropDefaultTheta(x)
            self.assertIsInstance(y, tf.Tensor)

        with self.session(graph=g) as sess:
            sess.run(tf.global_variables_initializer())
            x_val, y_val = sess.run([x, y])
            self.assertAllEqual(x_val, y_val)
Пример #14
0
    def testParallelMatmulLayer(self):
        g = tf.Graph()
        with g.as_default():
            tf.set_random_seed(24332)

            def MergeFn(xs):
                result = []
                for x in zip(*xs):
                    val = x[0]
                    for v in x[1:]:
                        val = tf.matmul(val, v)
                    result.append(val)
                return tuple(result)

            p = layers.ParallelLayer.Params().Set(
                name='parallel',
                merge=MergeFn,
                sub=[
                    lingvo_layers.FCLayer.Params().Set(name='foo',
                                                       input_dim=32,
                                                       output_dim=4),
                    lingvo_layers.FCLayer.Params().Set(name='bar',
                                                       input_dim=32,
                                                       output_dim=4),
                    lingvo_layers.FCLayer.Params().Set(name='baz',
                                                       input_dim=32,
                                                       output_dim=4)
                ])
            l = p.Instantiate()
            x = tf.random_normal(shape=[2, 4, 32])
            y = l.FPropDefaultTheta(x)

        with self.session(graph=g) as sess:
            sess.run(tf.global_variables_initializer())
            x_val, y_val, w = sess.run([x, y, l.vars])

        out = []
        act = x_val
        # relu(act \dot w + b)
        out += [np.maximum(0, np.matmul(act, w.foo.w) + w.foo.b)]
        self.assertEqual(out[-1].shape, (2, 4, 4))
        out += [np.maximum(0, np.matmul(act, w.bar.w) + w.bar.b)]
        self.assertEqual(out[-1].shape, (2, 4, 4))
        out += [np.maximum(0, np.matmul(act, w.baz.w) + w.baz.b)]
        self.assertEqual(out[-1].shape, (2, 4, 4))

        np_result = out[0]
        for v in out[1:]:
            np_result = np.matmul(np_result, v)
        self.assertAllClose(np_result, y_val, atol=1e-5, rtol=1e-5)
Пример #15
0
    def testBiasLayer(self):
        g = tf.Graph()
        with g.as_default():
            tf.set_random_seed(24332)
            p = layers.BiasLayer.Params().Set(name='test', dims=10)
            l = p.Instantiate()
            x = tf.random_normal(shape=[2, 10])
            y = l.FPropDefaultTheta(x)

        with self.session(graph=g) as sess:
            sess.run(tf.global_variables_initializer())
            x_val, y_val, w_val = sess.run([x, y, l.vars])

        self.assertEqual(w_val.b.shape, (10, ))
        self.assertAllClose(x_val + w_val.b, y_val)
Пример #16
0
  def testMapLayer(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(24332)
      p = layers.MapLayer.Params().Set(
          name='map', fn=tf.reduce_max, kwargs={'axis': 1})
      l = p.Instantiate()
      x0, x1 = [tf.random_normal(shape=[2, 3, 5])] * 2
      y0, y1 = l.FPropDefaultTheta(x0, x1)

    with self.session(graph=g) as sess:
      sess.run(tf.global_variables_initializer())
      vx0, vx1, vy0, vy1 = sess.run([x0, x1, y0, y1])

    self.assertAllClose(np.max(vx0, 1), vy0)
    self.assertAllClose(np.max(vx1, 1), vy1)
Пример #17
0
    def testParallelLayer(self):
        g = tf.Graph()
        with g.as_default():
            tf.set_random_seed(24332)
            p = layers.ParallelLayer.Params().Set(
                name='test',
                merge=lambda xs: tuple([tf.add_n(x) for x in zip(*xs)]),
                sub=[
                    lingvo_layers.FCLayer.Params().Set(name='foo',
                                                       input_dim=32,
                                                       output_dim=4),
                    lingvo_layers.FCLayer.Params().Set(name='bar',
                                                       input_dim=32,
                                                       output_dim=4),
                    layers.SequentialLayer.Params().Set(
                        name='seq',
                        sub=[
                            lingvo_layers.FCLayer.Params().Set(name='baz',
                                                               input_dim=32,
                                                               output_dim=4),
                            lingvo_layers.DropoutLayer.Params().Set(
                                name='dropout', keep_prob=0.5)
                        ])
                ])
            p.is_eval = True
            l = p.Instantiate()
            x = tf.random_normal(shape=[2, 32])
            y = l.FPropDefaultTheta(x)

        with self.session(graph=g) as sess:
            sess.run(tf.global_variables_initializer())
            x_val, y_val, w = sess.run([x, y, l.vars])

        out = []
        act = x_val
        # relu(act \dot w + b)
        out += [np.maximum(0, np.matmul(act, w.foo.w) + w.foo.b)]
        self.assertEqual(out[-1].shape, (2, 4))
        out += [np.maximum(0, np.matmul(act, w.bar.w) + w.bar.b)]
        self.assertEqual(out[-1].shape, (2, 4))
        out += [np.maximum(0, np.matmul(act, w.seq.baz.w) + w.seq.baz.b)]
        self.assertEqual(out[-1].shape, (2, 4))

        np_result = out[0]
        for v in out[1:]:
            np_result = np.add(np_result, v)
        self.assertAllClose(np_result, y_val)
Пример #18
0
    def _testDecoderFPropHelper(self, params):
        """Computes decoder from params and computes loss with random inputs."""
        dec = decoder.AsrDecoder(params)
        src_seq_len = 5
        src_enc = tf.random_normal([src_seq_len, 2, 8],
                                   seed=982774838,
                                   dtype=py_utils.FPropDtype(params))
        src_enc_padding = tf.constant(
            [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
            dtype=py_utils.FPropDtype(params))
        encoder_outputs = py_utils.NestedMap(encoded=src_enc,
                                             padding=src_enc_padding)
        # shape=[4, 5]
        target_ids = tf.transpose(
            tf.constant([[0, 1, 2, 3], [1, 2, 3, 4], [10, 11, 12, 15],
                         [5, 6, 7, 8], [10, 5, 2, 5]],
                        dtype=tf.int32))
        # shape=[4, 5]
        target_labels = tf.transpose(
            tf.constant([[0, 1, 2, 3], [1, 2, 3, 4], [10, 11, 12, 13],
                         [5, 7, 8, 10], [10, 5, 2, 4]],
                        dtype=tf.int32))
        # shape=[4, 5]
        target_paddings = tf.transpose(
            tf.constant([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0],
                         [0, 1, 0, 0], [1, 1, 1, 0]],
                        dtype=py_utils.FPropDtype(params)))
        target_transcripts = tf.constant(
            ['abcd', 'bcde', 'klmp', 'fghi', 'kfcf'])
        target_weights = 1.0 - target_paddings
        # ids/labels/weights/paddings are all in [batch, time] shape.
        targets = py_utils.NestedMap({
            'ids': target_ids,
            'labels': target_labels,
            'weights': target_weights,
            'paddings': target_paddings,
            'transcripts': target_transcripts,
        })
        metrics, per_sequence_loss = dec.FPropWithPerExampleLoss(
            encoder_outputs, targets)
        loss = metrics['loss']

        return loss, per_sequence_loss
Пример #19
0
  def testRepeatLayer(self):
    repeat = 100
    with self.session(use_gpu=False, graph=tf.Graph()) as sess:
      tf.set_random_seed(24332)
      p = layers.RepeatLayer.Params().Set(
          name='recurrent',
          repeat=repeat,
          body=lingvo_layers.FCLayer.Params().Set(input_dim=2, output_dim=2))
      l = p.Instantiate()
      x = tf.random_normal(shape=[2, 2])
      y = l.FPropDefaultTheta(x)
      tf.global_variables_initializer().run()
      x_val, y_val, w = sess.run([x, y, l.vars])

    np_val = x_val

    # relu(act \dot w + b)
    for i in range(repeat):
      np_val = np.maximum(0, np.dot(np_val, w.body.w[i]) + w.body.b[i])
    self.assertAllClose(np_val, y_val)
Пример #20
0
 def testSoftCondLayer(self):
   num_experts = 100
   with self.session(use_gpu=False, graph=tf.Graph()) as sess:
     tf.set_random_seed(24332)
     p = layers.SoftCondLayer.Params().Set(
         name='soft_cond',
         cond_dim=2,
         num_experts=num_experts,
         body=lingvo_layers.FCLayer.Params().Set(input_dim=2, output_dim=2))
     l = p.Instantiate()
     x = tf.random_normal(shape=[1, 2, 2])
     y = l.FPropDefaultTheta(x)
     tf.global_variables_initializer().run()
     x_val, y_val, vars_val = sess.run([x, y, l.vars])
   np_val = x_val[0]
   taks_weight = np.exp(-1.0 * np.dot(np.sum(np_val, 0), vars_val.w))
   taks_weight = 1.0 / (1.0 + taks_weight)
   weighted_weight = np.einsum('i,ijk->jk', taks_weight, vars_val.body.w)
   weighted_bias = np.einsum('i,ij->j', taks_weight, vars_val.body.b)
   np_val = np.maximum(0, np.dot(np_val, weighted_weight) + weighted_bias)
   self.assertAllClose(np_val, y_val[0])
Пример #21
0
  def _FPropChunk(self, theta, pcm_audio_chunk, pcm_audio_paddings):
    p = self.params
    pcm_audio_chunk = tf.cast(pcm_audio_chunk, tf.float32)
    # shape: [batch, time, _frame_size]
    framed_signal = tf.signal.frame(pcm_audio_chunk, self._frame_size,
                                    self._frame_step, p.pad_end)

    # Pre-emphasis.
    if p.preemph != 1.0:
      preemphasized = self._ApplyPreemphasis(framed_signal)
    else:
      preemphasized = framed_signal[:-1]

    # Noise.
    if p.noise_scale > 0.0:
      noise_signal = tf.random_normal(
          tf.shape(preemphasized),
          stddev=p.noise_scale,
          mean=0.0,
          seed=p.random_seed)
    else:
      noise_signal = 0.0

    # Apply window fn.
    windowed_signal = preemphasized + noise_signal
    if self._window_fn is not None:
      window = self._window_fn(self._frame_size - 1, framed_signal.dtype)
      windowed_signal *= window

    mel_spectrogram = self._MelSpectrogram(windowed_signal)

    output_floor = 1.0
    mel_spectrogram_log = tf.log(
        tf.maximum(float(output_floor), mel_spectrogram))

    # Mean and stddev.
    mel_spectrogram_norm = (
        (mel_spectrogram_log - tf.convert_to_tensor(p.per_bin_mean)) /
        tf.convert_to_tensor(p.per_bin_stddev))
    return mel_spectrogram_norm, self._GetMelPadding(pcm_audio_paddings)
Пример #22
0
  def testLinearLayer(self):
    g = tf.Graph()
    with g.as_default():
      tf.set_random_seed(24332)
      p = layers.LinearLayer.Params().Set(
          name='test', input_dims=10, output_dims=5)
      l = p.Instantiate()
      xs = []
      ys = []
      for shape in ([2, 10], [2, 3, 10], [2, 3, 5, 10], [2, 3, 5, 7, 10]):
        x = tf.random_normal(shape=shape)
        y = l.FPropDefaultTheta(x)
        xs += [x]
        ys += [y]

    with self.session(graph=g) as sess:
      sess.run(tf.global_variables_initializer())
      xs_val, ys_val, w_val = sess.run([xs, ys, l.vars])

    self.assertEqual(w_val.w.shape, (10, 5))
    for (xv, yv) in zip(xs_val, ys_val):
      self.assertAllClose(np.matmul(xv, w_val.w), yv)
Пример #23
0
    def testDecoderSingleClassNMS(self):
        batch_size = 4
        num_preds = 8
        num_classes = 10

        score_threshold = 0.05
        nms_iou_threshold = 0.5
        with tf.Graph().as_default():
            tf.set_random_seed(12345)
            predicted_bboxes = tf.random_normal([batch_size, num_preds, 7])
            classification_scores = tf.random_uniform(
                [batch_size, num_preds, num_classes], minval=0, maxval=1)

            bboxes, bbox_scores, valid_mask = detection_decoder.DecodeWithNMS(
                predicted_bboxes,
                classification_scores,
                nms_iou_threshold=nms_iou_threshold,
                score_threshold=score_threshold,
                use_oriented_per_class_nms=False)

            with self.session() as sess:
                outputs = sess.run([
                    predicted_bboxes, classification_scores, bboxes,
                    bbox_scores, valid_mask
                ])
                (input_bboxes, input_scores, output_bboxes, output_scores,
                 mask) = outputs

                self.assertEqual((batch_size, num_preds, 7),
                                 input_bboxes.shape)
                self.assertEqual((batch_size, num_classes, num_preds, 7),
                                 output_bboxes.shape)
                self.assertEqual((batch_size, num_preds, num_classes),
                                 input_scores.shape)
                self.assertEqual((batch_size, num_classes, num_preds),
                                 output_scores.shape)
                self.assertEqual((batch_size, num_classes, num_preds),
                                 mask.shape)
Пример #24
0
    def testGreedySearchHelper(self):
        with self.session(use_gpu=False) as sess:
            np.random.seed(9384758)
            tf.set_random_seed(8274758)
            vocab_size = 12
            src_len = 5
            tgt_len = 7
            src_batch_size = 2
            tgt_batch_size = src_batch_size
            p = beam_search_helper.GreedySearchHelper.Params().Set(
                name='gsh', target_seq_len=tgt_len)
            gs_helper = p.Instantiate()

            def InitGreedySearchState(unused_theta, unused_encoder_outputs,
                                      unused_num_hyps_per_beam):
                atten_probs = tf.constant(
                    np.random.normal(size=(tgt_batch_size, src_len)),
                    dtype=tf.float32)
                return (py_utils.NestedMap({
                    'log_probs':
                    tf.zeros([tgt_batch_size, vocab_size]),
                    'atten_probs':
                    atten_probs,
                }), py_utils.NestedMap({'atten_probs': atten_probs}))

            def PreGreedySearchStepCallback(unused_theta,
                                            unused_encoder_outputs,
                                            unused_step_ids, states,
                                            unused_num_hyps_per_beam):
                atten_probs = tf.identity(states.atten_probs)
                logits = tf.random_normal([tgt_batch_size, vocab_size],
                                          seed=8273747)
                return (py_utils.NestedMap({
                    'atten_probs': atten_probs,
                    'log_probs': logits
                }), states)

            def PostGreedySearchStepCallback(unused_theta,
                                             unused_encoder_outputs,
                                             unused_new_step_ids, states):
                return states

            src_enc = tf.random_normal([src_len, src_batch_size, 8],
                                       seed=982774838)
            src_enc_padding = tf.constant(
                [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
                dtype=tf.float32)
            encoder_outputs = py_utils.NestedMap(encoded=src_enc,
                                                 padding=src_enc_padding)

            theta = py_utils.NestedMap()
            (final_hyp_ids, final_hyp_lens,
             final_done_hyps) = gs_helper.GreedySearchDecode(
                 theta, encoder_outputs, InitGreedySearchState,
                 PreGreedySearchStepCallback, PostGreedySearchStepCallback)

            (final_hyp_ids, final_hyp_lens, final_done_hyps) = sess.run(
                [final_hyp_ids, final_hyp_lens, final_done_hyps])

            print(np.array_repr(final_hyp_ids))
            print(np.array_repr(final_hyp_lens))
            print(np.array_repr(final_done_hyps))

            expected_hyp_ids = [[2, 2, 6, 7, 1, 9, 4], [3, 9, 3, 9, 6, 5, 10]]
            expected_hyp_lens = [1, 7]
            expected_done_hyps = [True, False]
            self.assertEqual(expected_hyp_ids, final_hyp_ids.tolist())
            self.assertEqual(expected_hyp_lens, final_hyp_lens.tolist())
            self.assertEqual(expected_done_hyps, final_done_hyps.tolist())
Пример #25
0
    def testCustomStepIds(self):
        with self.session(use_gpu=False) as sess:
            np.random.seed(9384758)
            tf.set_random_seed(8274758)
            vocab_size = 12
            src_len = 5
            tgt_len = 7
            num_hyps_per_beam = 3
            src_batch_size = 2
            tgt_batch_size = src_batch_size * num_hyps_per_beam
            p = beam_search_helper.BeamSearchHelper.Params().Set(
                name='bsh', target_seq_len=tgt_len)
            bs_helper = p.Instantiate()

            def InitBeamSearchState(unused_theta, unused_encoder_outputs,
                                    unused_num_hyps_per_beam):
                atten_probs = tf.constant(
                    np.random.normal(size=(tgt_batch_size, src_len)),
                    dtype=tf.float32)
                return (py_utils.NestedMap({
                    'log_probs':
                    tf.zeros([tgt_batch_size, vocab_size]),
                    'atten_probs':
                    atten_probs,
                    'step_ids':
                    tf.zeros([tgt_batch_size, 1], dtype=tf.int32)
                }), py_utils.NestedMap({'atten_probs': atten_probs}))

            def PreBeamSearchStepCallback(unused_theta, unused_encoder_outputs,
                                          unused_step_ids, states,
                                          unused_num_hyps_per_beam):
                atten_probs = tf.identity(states.atten_probs)
                logits = tf.random_normal([tgt_batch_size, vocab_size],
                                          seed=8273747)
                return (py_utils.NestedMap({
                    'atten_probs': atten_probs,
                    'log_probs': logits
                }), states)

            def PostBeamSearchStepCallback(unused_theta,
                                           unused_encoder_outputs,
                                           unused_new_step_ids, states):
                return states

            src_enc = tf.random_normal([src_len, src_batch_size, 8],
                                       seed=982774838)
            src_enc_padding = tf.constant(
                [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 1.0], [1.0, 1.0]],
                dtype=tf.float32)
            encoder_outputs = py_utils.NestedMap(encoded=src_enc,
                                                 padding=src_enc_padding)

            theta = py_utils.NestedMap()
            decoder_output = bs_helper.BeamSearchDecode(
                theta, encoder_outputs, num_hyps_per_beam, InitBeamSearchState,
                PreBeamSearchStepCallback, PostBeamSearchStepCallback)

            topk_ids, topk_lens, topk_scores = sess.run([
                decoder_output.topk_ids, decoder_output.topk_lens,
                decoder_output.topk_scores
            ])
            print(np.array_repr(topk_ids))
            print(np.array_repr(topk_lens))
            print(np.array_repr(topk_scores))
            expected_topk_ids = [[4, 3, 4, 3, 2, 0, 0], [4, 3, 11, 2, 0, 0, 0],
                                 [4, 3, 6, 2, 0, 0, 0], [6, 0, 4, 6, 6, 11, 2],
                                 [6, 0, 4, 6, 1, 2, 0], [6, 0, 4, 6, 6, 2, 0]]
            expected_topk_lens = [5, 4, 4, 7, 6, 6]
            expected_topk_scores = [[8.27340603, 6.26949024, 5.59490776],
                                    [9.74691486, 8.46679497, 7.14809656]]
            self.assertEqual(expected_topk_ids, topk_ids.tolist())
            self.assertEqual(expected_topk_lens, topk_lens.tolist())
            self.assertAllClose(expected_topk_scores, topk_scores)
Пример #26
0
 def testExpandTensor(self, input_shape, block_dim):
   weights = tf.random_normal(shape=input_shape)
   self._compare_expand_tensor_with_kronecker_product(weights, block_dim)