Пример #1
0
    def testPerLayerBlockSparsity(self):
        param_list = [
            "block_dims_map=[layer1/weights:1x1,layer2/weights:1x2]",
            "block_pooling_function=AVG", "threshold_decay=0.0"
        ]

        test_spec = ",".join(param_list)
        pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

        with tf.variable_scope("layer1"):
            w1 = tf.constant([[-0.1, 0.1], [-0.2, 0.2]], name="weights")
            pruning.apply_mask(w1)

        with tf.variable_scope("layer2"):
            w2 = tf.constant([[0.1, 0.1, 0.3, 0.3], [0.2, 0.2, 0.4, 0.4]],
                             name="weights")
            pruning.apply_mask(w2)

        sparsity = tf.Variable(0.5, name="sparsity")

        p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
        mask_update_op = p.mask_update_op()
        with self.cached_session() as session:
            tf.global_variables_initializer().run()
            session.run(mask_update_op)
            mask1_eval = session.run(pruning.get_masks()[0])
            mask2_eval = session.run(pruning.get_masks()[1])

            self.assertAllEqual(session.run(pruning.get_weight_sparsity()),
                                [0.5, 0.5])

            self.assertAllEqual(mask1_eval, [[0.0, 0.0], [1., 1.]])
            self.assertAllEqual(mask2_eval, [[0, 0, 1., 1.], [0, 0, 1., 1.]])
Пример #2
0
 def testConditionalMaskUpdate(self):
     param_list = [
         "pruning_frequency=2", "begin_pruning_step=1",
         "end_pruning_step=6", "nbins=100"
     ]
     test_spec = ",".join(param_list)
     pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)
     weights = tf.Variable(tf.linspace(1.0, 100.0, 100), name="weights")
     masked_weights = pruning.apply_mask(weights)
     sparsity = tf.Variable(0.00, name="sparsity")
     # Set up pruning
     p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
     p._spec.threshold_decay = 0.0
     mask_update_op = p.conditional_mask_update_op()
     sparsity_val = tf.linspace(0.0, 0.9, 10)
     increment_global_step = tf.assign_add(self.global_step, 1)
     non_zero_count = []
     with self.cached_session() as session:
         tf.global_variables_initializer().run()
         for i in range(10):
             session.run(tf.assign(sparsity, sparsity_val[i]))
             session.run(mask_update_op)
             session.run(increment_global_step)
             non_zero_count.append(np.count_nonzero(masked_weights.eval()))
     # Weights pruned at steps 0,2,4,and,6
     expected_non_zero_count = [100, 100, 80, 80, 60, 60, 40, 40, 40, 40]
     self.assertAllEqual(expected_non_zero_count, non_zero_count)
Пример #3
0
    def testWeightSpecificSparsity(self):
        param_list = [
            "begin_pruning_step=1", "pruning_frequency=1",
            "end_pruning_step=100", "target_sparsity=0.5",
            "weight_sparsity_map=[layer1:0.6,layer2/weights:0.75,.*kernel:0.6]",
            "threshold_decay=0.0"
        ]
        test_spec = ",".join(param_list)
        pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

        with tf.variable_scope("layer1"):
            w1 = tf.Variable(tf.linspace(1.0, 100.0, 100), name="weights")
            _ = pruning.apply_mask(w1)
        with tf.variable_scope("layer2"):
            w2 = tf.Variable(tf.linspace(1.0, 100.0, 100), name="weights")
            _ = pruning.apply_mask(w2)
        with tf.variable_scope("layer3"):
            w3 = tf.Variable(tf.linspace(1.0, 100.0, 100), name="kernel")
            _ = pruning.apply_mask(w3)

        p = pruning.Pruning(pruning_hparams)
        mask_update_op = p.conditional_mask_update_op()
        increment_global_step = tf.assign_add(self.global_step, 1)

        with self.cached_session() as session:
            tf.global_variables_initializer().run()
            for _ in range(110):
                session.run(mask_update_op)
                session.run(increment_global_step)

            self.assertAllClose(session.run(pruning.get_weight_sparsity()),
                                [0.6, 0.75, 0.6])
Пример #4
0
 def setUp(self):
     super(PruningHParamsTest, self).setUp()
     # Add global step variable to the graph
     self.global_step = tf.train.get_or_create_global_step()
     # Add sparsity
     self.sparsity = tf.Variable(0.5, name="sparsity")
     # Parse hparams
     self.pruning_hparams = pruning.get_pruning_hparams().parse(
         self.TEST_HPARAMS)
Пример #5
0
    def _blockMasking(self, hparams, weights, expected_mask):

        threshold = tf.Variable(0.0, name="threshold")
        sparsity = tf.Variable(0.5, name="sparsity")
        test_spec = ",".join(hparams)
        pruning_hparams = pruning.get_pruning_hparams().parse(test_spec)

        # Set up pruning
        p = pruning.Pruning(pruning_hparams, sparsity=sparsity)
        with self.cached_session():
            tf.global_variables_initializer().run()
            _, new_mask = p._maybe_update_block_mask(weights, threshold)
            # Check if the mask is the same size as the weights
            self.assertAllEqual(new_mask.get_shape(), weights.get_shape())
            mask_val = new_mask.eval()
            self.assertAllEqual(mask_val, expected_mask)