Пример #1
0
    def ilookup(self, m, tolerance=None):
        """
        Note: all lookups in this module relies on this method, this is the
        only method where methods from the ``lipyd.lookup`` module called.
        
        Parameters
        ----------
        m : float
            Exact mass to lookup.
        tolerance : int,float
            Tolerance in ppm or in Daltons if attribute
            ``_daltons_tolerance`` is True.

        Returns
        -------
        Array of database array indices.
        """

        if tolerance and self._daltons_tolerance:

            tolerance = _lookup.absolute_tolerance(tolerance, m)

        return _lookup.findall(
            self.masses,
            m,
            t=tolerance or self.tolerance,
        )
Пример #2
0
    def lookup(self, mz, nl=False, tolerance=None):
        """Searches for fragments in the database matching the `mz` within the
        actual range of tolerance. To change the tolerance set the
        `tolerance` attribute to the desired ppm value.
        
        Args
        ----

        Parameters
        ----------
        bool :
            nl:
            The m/z is a neutral loss.
        mz :
            
        nl :
             (Default value = False)
        tolerance :
             (Default value = None)

        Returns
        -------

        """

        idx = lookup_.findall(self.fragments[:, 0], mz, tolerance
                              or self.tolerance)
        # filtering for NL or not NL
        idx = [
            i for i in idx if (nl and self.fragments[i, 6] == 0) or (
                not nl and self.fragments[i, 6] != 0)
        ]

        return self.fragments[idx, :]
Пример #3
0
def align(*arrays, tolerance=5):

    narrays = len(arrays)

    array = np.concatenate(arrays)
    # indices within arrays
    idx = np.concatenate(tuple(np.arange(len(a)) for a in arrays))
    # which array the value belongs to
    iarray = np.concatenate(
        tuple(np.full(a.shape, i) for i, a in enumerate(arrays)))
    # keep track if elements have been used already
    used = np.full(iarray.shape, False)

    # sort all arrays by values
    isort = array.argsort()
    array = array[isort]
    idx = idx[isort]
    iarray = iarray[isort]

    # here we collect the lines of the result array
    result = []

    # these are the array memberships
    for i, val in enumerate(array):

        partners = lookup.findall(array, val)

        result.append((i, partners))

    return array, result
Пример #4
0
                intensity = v
            else:
                continue
            # RT in seconds convert into minutes:
            feature_list.append( (float(MZ), float(RT)/60., float(intensity)) )

    feature_list.sort()
    
    intersection_dic = {}

    for e in feature_list:
        #closest_index = lookup.find(
        result_list = lookup.findall(
            samples.mzs_by_sample[
                :,samples.attrs.sample_id_to_index[('A', 10)]
            ], # all masses in the sample
            e[0],        # mass to search for
            t = 10 # tolerance in ppm
        )
        if len( result_list ):
            for closest_index in result_list:
                intersection_dic[(e[0], e[1], e[2])] = \
                    ((mzs[closest_index],
                    rts[closest_index],
                    intens[closest_index],
                    (e[0]/mzs[closest_index]-1)*1e6 )
                )
            
        else:
            intersection_dic[(e[0], e[1], e[2])] = (result_list, None)
      
Пример #5
0
    def lookup(self, mz, rt=None, tolerance=None):
        """
        Looks up an MS1 m/z and returns the indices of MS2 scans in the
        MGF file.
        
        Returns 2 numpy arrays of the same length: first one with the indices,
        second one with the RT differences.

        Parameters
        ----------
        mz :
            
        rt :
             (Default value = None)
        tolerance :
             (Default value = None)

        Returns
        -------

        """

        if self._log_verbosity > 4:

            self._log.msg('Recalibrated m/z: %.08f; drift = %.08f; '
                          'measured m/z: %.08f' %
                          (mz, self.drift, mz / self.drift))

        rt = rt or np.nan
        mz_uncorr = mz / self.drift

        idx = np.array(
            lookup.findall(self.mgfindex[:, 0], mz_uncorr, tolerance
                           or self.tolerance))
        rtdiff = np.array([self.mgfindex[i, 2] - rt for i in idx])

        if self._log_verbosity > 4:

            self._log('Looking up MS1 m/z %.08f. '
                      'MS2 scans with matching precursor mass: %u' % (
                          mz_uncorr,
                          len(idx),
                      ))

        if self.ms2_rt_within_range:

            if np.isnan(rt):

                self._log('No MS1 RT provided, could not check RT '
                          'difference of MS2 scans.')

            idx = idx[np.logical_or(np.isnan(rtdiff),
                                    np.abs(rtdiff) < self.rt_tolerance)]

            if self._log_verbosity > 4:

                self._log('RT range: %.03f--%.03f; '
                          'Matching MS2 scans within this range: %u' % (
                              rtlower,
                              rtupper,
                              len(idx),
                          ))

        elif self._log_verbosity > 4:

            self._log('Not checking RT.')

        return idx, rtdiff