# Articles Object # ~~~~~~~~~~~~~~~ # # LISC uses a custom objects to store and organize collected words data. # # These objects are used internally in the :class:`~.Words` objects. # # If the data collection was set to save out data as it was collected, then # :obj:`~.Articles` objects can be loaded individually, using the label # of the search term. # ################################################################################################### # Set up database object db = SCDB('lisc_db') # Load raw data for a particular term term = 'frontal lobe' arts = Articles(term) arts.load(db) ################################################################################################### # ArticlesAll Object # ~~~~~~~~~~~~~~~~~~ # # There is also the :obj:`~.ArticlesAll` object, which is variant which can be used # to aggregate collected data across all articles collected for a given search term. # # The :obj:`~.ArticlesAll` object also has methods to create and check summaries # created from the aggregate data, across all articles for a given search term.
from lisc.utils.io import load_object ################################################################################################### # Metadata # -------- # # Whenever you collect data with LISC, meta data is collected about the API requests # and databases accessed. # # Here we will explore the metadata collected during our previous investigations. # ################################################################################################### # Reload the counts object counts = load_object('tutorial_counts', SCDB('lisc_db')) ################################################################################################### # Metadata Object # --------------- # # Metadata information is collected into a custom :class:`~.MetaData` object. # # If you are collecting data using the LISC object, such as the :class:`~.Counts` # or :class:`~.Words` object, this collection information is attached and saved # to the object as the `meta_data` attribute. # ################################################################################################### # Check the date on which the collection happened
['occipital lobe']] terms_b = [['vision'], ['audition', 'auditory'], ['somatosensory'], ['olfaction', 'smell'], ['gustation', 'taste'], ['proprioception'], ['nociception', 'pain']] ################################################################################################### # Set terms lists # Different terms lists are indexed by the 'A' and 'B' labels counts.add_terms(terms_a, dim='A') counts.add_terms(terms_b, dim='B') ################################################################################################### # Collect co-occurrence data counts.run_collection() ################################################################################################### # # From there you can use all the same methods to explore the data we just collected. # # In the next tutorial, we explore analyzing our collected counts data. # # For now, let's save out our collected counts data, using the LISC utility to save the object. # ################################################################################################### # Save out the counts object save_object(counts, 'tutorial_counts', directory=SCDB('lisc_db'))
# Word Collection Settings # ~~~~~~~~~~~~~~~~~~~~~~~~ # # For larger collections, the collectio my take a while and return a large amount of data. # # Because of this, the :class:`~.Words` object allows for continuously saving collected data. # If set to True, the `save_and_clear` parameter saves out collected data, and clears the # object per term, so that collected data does not have to stay in RAM. # # Now, let's run our bigger collection, using some of these settings. # ################################################################################################### # Set up our database object, so we can save out data as we go db = SCDB('lisc_db') # Collect words data words.run_collection(usehistory=True, retmax=15, save_and_clear=True, directory=db) ################################################################################################### # # After this collection, the Words object does not actually include the collected data, # as the data was saved and cleared throughout the collection. # # The Words object does still have all the information about the search terms, which we can # use to reload our data, so it is still worth saving as well. # # We will analyze our words data in the next tutorial. For now lets save out the Words object. #
def __init__(self): # Initialize from normal database object base = pkg.resource_filename(__name__, 'test_db') SCDB.__init__(self, base=base)
# Articles Object # ~~~~~~~~~~~~~~~ # # LISC uses custom objects to store and organize collected words data. # # These objects are used internally in the :class:`~.Words` objects. # # If the data collection was set to save out data as it was collected, then # :obj:`~.Articles` objects can be loaded individually, using the label # of the search term. # ################################################################################################### # Set up database object db = SCDB('lisc_db') # Load raw data for a particular term term = 'frontal lobe' arts = Articles(term) arts.load(db) ################################################################################################### # ArticlesAll Object # ~~~~~~~~~~~~~~~~~~ # # The :obj:`~.ArticlesAll` object aggregates collected data across all articles collected # for a given search term. # ###################################################################################################