Пример #1
0
    def test_siganyonecanpay_none_send(self):
        """
        SIGHASH_NONE | SIGHASH_ANYONECANPAY:signs only the txin_index input
        """
        tx = Transaction([self.txin1_siganyonecanpay_none],
                         [self.txout1_siganyonecanpay_none],
                         has_segwit=True)
        pk = self.sk.get_public_key().to_hex()

        sig_signone = self.sk.sign_segwit_input(
            tx, 0, self.p2pkh_redeem_script,
            self.txin1_siganyonecanpay_none_amount,
            SIGHASH_NONE | SIGHASH_ANYONECANPAY)
        tx.witnesses = [Script([sig_signone, pk])]

        tx.inputs.append(self.txin2_siganyonecanpay_none)
        tx.outputs.append(self.txout2_siganyonecanpay_none)

        sig = self.sk.sign_segwit_input(tx, 1, self.p2pkh_redeem_script,
                                        self.txin2_siganyonecanpay_none_amount,
                                        SIGHASH_ALL)
        tx.witnesses.append(Script([sig, pk]))

        self.assertEqual(tx.serialize(),
                         self.test_siganyonecanpay_none_send_result)
Пример #2
0
 def test_signed_send_to_p2wpkh(self):
     # Non-segregated witness transaction
     tx = Transaction([self.txin1], [self.txout1])
     sig = self.sk.sign_input(tx, 0, self.p2pkh_addr.to_script_pub_key())
     pk = self.sk.get_public_key().to_hex()
     self.txin1.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.create_send_to_p2wpkh_result)
 def test_send_to_non_std(self):
     tx = Transaction([self.txin], [self.txout, self.change_txout])
     from_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
     sig = self.sk.sign_input(tx, 0, from_addr.to_script_pub_key())
     pk = self.sk.get_public_key().to_hex()
     self.txin.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.create_non_std_tx_result)
Пример #4
0
 def test_spend_p2wpkh(self):
     tx = Transaction([self.txin_spend], [self.txout2], has_segwit=True)
     sig = self.sk.sign_segwit_input(tx, 0, self.p2pkh_redeem_script,
                                     self.txin_spend_amount)
     pk = self.sk.get_public_key().to_hex()
     tx.witnesses = [Script([sig, pk])]
     self.assertEqual(tx.serialize(), self.spend_p2pkh_result)
Пример #5
0
    def test_multiple_input_multiple_ouput(self):
        tx = Transaction(
            [self.txin1_multiple, self.txin2_multiple, self.txin3_multiple], [
                self.output1_multiple, self.output2_multiple,
                self.output3_multiple
            ],
            has_segwit=True)

        sig1 = self.sk1.sign_input(tx, 0, self.p2pkh_addr.to_script_pub_key())
        pk1 = self.sk1.get_public_key().to_hex()
        self.txin1_multiple.script_sig = Script([sig1, pk1])
        tx.witnesses = [Script([])]

        sig_p2sh1 = self.sk1.sign_segwit_input(tx, 1, self.p2wsh_redeem_script,
                                               self.txin2_multiple_amount)
        sig_p2sh2 = self.sk2.sign_segwit_input(tx, 1, self.p2wsh_redeem_script,
                                               self.txin2_multiple_amount)
        pk2 = self.p2wsh_redeem_script.to_hex()
        tx.witnesses.append(Script(['OP_0', sig_p2sh1, sig_p2sh2, pk2]))

        sig3 = self.sk1.sign_segwit_input(tx, 2,
                                          self.p2pkh_addr.to_script_pub_key(),
                                          self.txin3_multiple_amount)
        pk3 = self.sk1.get_public_key().to_hex()
        tx.witnesses.append(Script([sig3, pk3]))

        #print(tx.serialize())
        self.assertEqual(tx.serialize(),
                         self.multiple_input_multiple_ouput_result)
 def test_signed_tx_1_input_2_outputs(self):
     tx = Transaction([self.txin], [self.txout, self.change_txout])
     sig = self.sk.sign_input( tx, 0, Script(['OP_DUP', 'OP_HASH160',
                                             self.from_addr.to_hash160(),
                                             'OP_EQUALVERIFY', 'OP_CHECKSIG']) )
     pk = self.sk.get_public_key().to_hex()
     self.txin.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.core_tx_signed_result)
 def test_signed_low_s_SIGSINGLE_tx_1_input_2_outputs(self):
     tx = Transaction([self.sig_txin1], [self.sig_txout1, self.sig_txout2] )
     sig = self.sig_sk1.sign_input( tx, 0,
                                   self.sig_from_addr1.to_script_pub_key(),
                                  SIGHASH_SINGLE)
     pk = self.sig_sk1.get_public_key().to_hex()
     self.sig_txin1.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.sig_sighash_single_result)
def main():
    # always remember to setup the network
    setup('testnet')

    # create transaction input from tx id of UTXO (contained 0.4 tBTC)
    txin = TxInput(
        'fb48f4e23bf6ddf606714141ac78c3e921c8c0bebeb7c8abb2c799e9ff96ce6c', 0)

    # create transaction output using P2PKH scriptPubKey (locking script)
    addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    txout = TxOutput(
        to_satoshis(0.1),
        Script([
            'OP_DUP', 'OP_HASH160',
            addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))

    # create another output to get the change - remaining 0.01 is tx fees
    # note that this time we used to_script_pub_key() to create the P2PKH
    # script
    change_addr = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
    change_txout = TxOutput(to_satoshis(0.29), change_addr.to_script_pub_key())
    #change_txout = TxOutput(to_satoshis(0.29), Script(['OP_DUP', 'OP_HASH160',
    #                                     change_addr.to_hash160(),
    #                                     'OP_EQUALVERIFY', 'OP_CHECKSIG']))

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout, change_txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to sign the input
    sk = PrivateKey('cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')

    # note that we pass the scriptPubkey as one of the inputs of sign_input
    # because it is used to replace the scriptSig of the UTXO we are trying to
    # spend when creating the transaction digest
    from_addr = P2pkhAddress('myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e')
    sig = sk.sign_input(
        tx, 0,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))
    #print(sig)

    # get public key as hex
    pk = sk.get_public_key().to_hex()

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
def main():
    # always remember to setup the network
    setup('testnet')

    #
    # This script creates a P2SH address containing a P2PK script and sends
    # some funds to it
    #

    # create transaction input from tx id of UTXO (contained 0.1 tBTC)
    txin = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 0)

    # address we are spending from
    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')

    # secret key of address that we are trying to spent
    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')

    #
    # create transaction output using P2SH scriptPubKey (locking script)
    # (the recipient will give us the final address  but for now we create it
    # for demonstration purposes)
    #

    # secret key corresponding to the pubkey needed for the P2SH (P2PK) transaction
    p2pk_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
    p2pk_pk = p2pk_sk.get_public_key().to_hex()
    redeem_script = Script([p2pk_pk, 'OP_CHECKSIG'])
    txout = TxOutput(to_satoshis(0.09), redeem_script.to_p2sh_script_pub_key())

    # no change address - the remaining 0.01 tBTC will go to miners)

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to create the signature for the txin
    sig = sk.sign_input(tx, 0, from_addr.to_script_pub_key())
    #print(sig)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
Пример #10
0
    def test_spend_p2wsh(self):
        tx = Transaction([self.txin_spend], [self.txout2], has_segwit=True)
        sig1 = self.sk1.sign_segwit_input(tx, 0, self.p2wsh_redeem_script,
                                          self.txin_spend_amount)
        sig2 = self.sk2.sign_segwit_input(tx, 0, self.p2wsh_redeem_script,
                                          self.txin_spend_amount)

        pk = self.p2wsh_redeem_script.to_hex()
        tx.witnesses = [Script(['OP_0', sig1, sig2, pk])]
        #print(tx.serialize())
        self.assertEqual(tx.serialize(), self.spend_p2pkh_result)
Пример #11
0
 def test_signed_low_s_SIGNONE_tx_1_input_2_outputs(self):
     tx = Transaction([self.txin], [self.txout, self.change_low_s_txout])
     sig = self.sk.sign_input( tx, 0, Script(['OP_DUP', 'OP_HASH160',
                                      self.from_addr.to_hash160(),
                                      'OP_EQUALVERIFY', 'OP_CHECKSIG']),
                              SIGHASH_NONE)
     pk = self.sk.get_public_key().to_hex()
     self.txin.script_sig = Script([sig, pk])
     # check correct raw tx
     self.assertEqual(tx.serialize(),
                      self.core_tx_signed_low_s_SIGNONE_result)
     # check correct calculation of txid
     self.assertEqual(tx.get_txid(), self.core_tx_signed_low_s_SIGNONE_txid)
def main():
    # always remember to setup the network
    setup('regtest')

    # create transaction input from tx id of UTXO (contained 0.4 tBTC)
    txin = TxInput(
        'e2d08a63a540000222d6a92440436375d8b1bc89a2638dc5366833804287c83f', 1)

    # locking script expects 2 numbers that when added equal 5 (silly example)
    txout = TxOutput(to_satoshis(0.9), Script(['OP_ADD', 'OP_5', 'OP_EQUAL']))

    # create another output to get the change - remaining 0.01 is tx fees
    # note that this time we used to_script_pub_key() to create the P2PKH
    # script
    change_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
    change_txout = TxOutput(to_satoshis(2), change_addr.to_script_pub_key())

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout, change_txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to sign the input
    sk = PrivateKey('cMahea7zqjxrtgAbB7LSGbcQUr1uX1ojuat9jZodMN87JcbXMTcA')

    # note that we pass the scriptPubkey as one of the inputs of sign_input
    # because it is used to replace the scriptSig of the UTXO we are trying to
    # spend when creating the transaction digest
    from_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
    sig = sk.sign_input(
        tx, 0,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))
    #print(sig)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
def main():
    # always remember to setup the network
    setup('testnet')

    # send 2 P2PKH inputs to 1 P2WPKH output

    # create transaction inputs from tx ids of UTXOs (contained 0.002 tBTC)
    txin = TxInput('eddfaa3d5a1c9a2a2961638aa4e28871b09ed9620f9077482248f368d46d8205', 1)
    txin2 = TxInput('cf4b2987c06b9dd2ba6770af31a4942a4ea3e7194c0d64e8699e9fda03f50551', 1)

    # create transaction output using P2WPKH scriptPubKey (locking script)
    addr = P2wpkhAddress('tltc1qedur7y052upuzd7wzh60d2f86szgpuspmml8ce')
    txout = TxOutput(to_satoshis(0.0019), addr.to_script_pub_key())
    #txout = TxOutput(to_satoshis(0.0019), Script([0, addr.to_hash()]) )

    # create transaction from inputs/outputs -- default locktime is used
    # note that this is not a segwit transaction since we don't spend segwit
    tx = Transaction([txin, txin2], [txout]) #, has_segwit=True)

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private keys corresponding to the address that contains the
    # UTXOs we are trying to spend to sign the input
    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
    sk2 = PrivateKey('cVf3kGh6552jU2rLaKwXTKq5APHPoZqCP4GQzQirWGHFoHQ9rEVt')

    # note that we pass the scriptPubkey as one of the inputs of sign_input
    # because it is used to replace the scriptSig of the UTXO we are trying to
    # spend when creating the transaction digest
    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    sig = sk.sign_input( tx, 0, Script(['OP_DUP', 'OP_HASH160',
                                       from_addr.to_hash160(), 'OP_EQUALVERIFY',
                                       'OP_CHECKSIG']) )
    from_addr2 = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
    sig2 = sk2.sign_input( tx, 1, from_addr2.to_script_pub_key() )

    # get public key as hex
    pk = sk.get_public_key().to_hex()
    pk2 = sk2.get_public_key().to_hex()

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    txin2.script_sig = Script([sig2, pk2])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
Пример #14
0
    def test_p2pkh_and_p2wpkh_to_p2pkh(self):
        tx = Transaction([self.txin_spend_p2pkh, self.txin_spend_p2wpkh],
                         [self.txout3],
                         has_segwit=True)
        # spend_p2pkh
        sig1 = self.sk.sign_input(tx, 0, self.p2pkh_addr.to_script_pub_key())
        pk1 = self.sk.get_public_key().to_hex()
        self.txin_spend_p2pkh.script_sig = Script([sig1, pk1])
        tx.witnesses = [Script([])]
        # spend_p2wpkh
        sig2 = self.sk.sign_segwit_input(tx, 1, self.p2pkh_redeem_script,
                                         self.txin_spend_p2wpkh_amount)
        pk2 = self.sk.get_public_key().to_hex()
        tx.witnesses.append(Script([sig2, pk2]))

        self.assertEqual(tx.serialize(), self.p2pkh_and_p2wpkh_to_p2pkh_result)
Пример #15
0
    def test_sigsingle_send(self):
        """
        SIGHASH_SINGLE:signs all inputs but only txin_index output
        """
        tx = Transaction([self.txin1_sigsingle], [self.txout1_sigsingle],
                         has_segwit=True)
        pk = self.sk.get_public_key().to_hex()

        sig_signone = self.sk.sign_segwit_input(tx, 0,
                                                self.p2pkh_redeem_script,
                                                self.txin1_sigsingle_amount,
                                                SIGHASH_SINGLE)
        tx.witnesses = [Script([sig_signone, pk])]

        tx.outputs.append(self.txout2_sigsingle)
        self.assertEqual(tx.serialize(), self.test_sigsingle_send_result)
Пример #16
0
 def test_signed_SIGALLSINGLE_ANYONEtx_2in_2_out(self):
     # note that this would have failed due to absurdly high fees but we
     # ignore it for our purposes
     tx = Transaction([self.sig_txin1, self.sig_txin2], [self.sig_txout1, self.sig_txout2] )
     sig = self.sig_sk1.sign_input(tx, 0, Script(['OP_DUP', 'OP_HASH160',
                                      self.sig_from_addr1.to_hash160(),
                                      'OP_EQUALVERIFY', 'OP_CHECKSIG']),
                              SIGHASH_ALL|SIGHASH_ANYONECANPAY)
     sig2 = self.sig_sk2.sign_input(tx, 1,
                                    self.sig_from_addr2.to_script_pub_key(),
                              SIGHASH_SINGLE|SIGHASH_ANYONECANPAY)
     pk = self.sig_sk1.get_public_key().to_hex()
     pk2 = self.sig_sk2.get_public_key().to_hex()
     self.sig_txin1.script_sig = Script([sig, pk])
     self.sig_txin2.script_sig = Script([sig2, pk2])
     self.assertEqual(tx.serialize(),
                      self.sign_sighash_all_single_anyone_2in_2out_result)
Пример #17
0
 def test_spend_p2sh_csv_p2pkh(self):
     redeem_script = Script([
         self.seq.for_script(), 'OP_CHECKSEQUENCEVERIFY', 'OP_DROP',
         'OP_DUP', 'OP_HASH160',
         self.sk_csv_p2pkh.get_public_key().to_hash160(), 'OP_EQUALVERIFY',
         'OP_CHECKSIG'
     ])
     txout = TxOutput(to_satoshis(11),
                      self.another_addr.to_script_pub_key())
     tx = Transaction([self.txin_seq], [txout])
     sig = self.sk_csv_p2pkh.sign_input(tx, 0, redeem_script)
     self.txin_seq.script_sig = Script([
         sig,
         self.sk_csv_p2pkh.get_public_key().to_hex(),
         redeem_script.to_hex()
     ])
     self.assertEqual(tx.serialize(), self.spend_p2sh_csv_p2pkh_result)
def main():
    # always remember to setup the network
    setup('testnet')

    # the key that corresponds to the P2WPKH address
    priv = PrivateKey("cVdte9ei2xsVjmZSPtyucG43YZgNkmKTqhwiUA8M4Fc3LdPJxPmZ")

    pub = priv.get_public_key()

    fromAddress = pub.get_segwit_address()
    print(fromAddress.to_string())

    # amount is needed to sign the segwit input
    fromAddressAmount = to_satoshis(0.01)

    # UTXO of fromAddress
    txid = '13d2d30eca974e8fa5da11b9608fa36905a22215e8df895e767fc903889367ff'
    vout = 0

    toAddress = P2pkhAddress('mrrKUpJnAjvQntPgz2Z4kkyr1gbtHmQv28')

    # create transaction input from tx id of UTXO
    txin = TxInput(txid, vout)

    # the script code required for signing for p2wpkh is the same as p2pkh
    script_code = Script([
        'OP_DUP', 'OP_HASH160',
        pub.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
    ])

    # create transaction output
    txOut = TxOutput(to_satoshis(0.009), toAddress.to_script_pub_key())

    # create transaction without change output - if at least a single input is
    # segwit we need to set has_segwit=True
    tx = Transaction([txin], [txOut], has_segwit=True)

    print("\nRaw transaction:\n" + tx.serialize())

    sig = priv.sign_segwit_input(tx, 0, script_code, fromAddressAmount)
    tx.witnesses.append(Script([sig, pub.to_hex()]))

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + tx.serialize())
    print("\nTxId:", tx.get_txid())
Пример #19
0
    def test_signone_send(self):
        """
        SIGHASH_NONE:signs all of the inputs
        """
        # First, only txin1 and txout1 are added to the transaction.
        tx = Transaction([self.txin1_signone], [self.txout1_signone],
                         has_segwit=True)
        pk = self.sk.get_public_key().to_hex()

        sig_signone = self.sk.sign_segwit_input(tx, 0,
                                                self.p2pkh_redeem_script,
                                                self.txin1_signone_amount,
                                                SIGHASH_NONE)
        tx.witnesses = [Script([sig_signone, pk])]
        # Adding additional output signatures will not be affected
        tx.outputs.append(self.txout2_signone)

        self.assertEqual(tx.serialize(), self.test_signone_send_result)
def main():
    # always remember to setup the network
    setup('testnet')

    # the key that corresponds to the P2WPKH address
    priv = PrivateKey('cNho8fw3bPfLKT4jPzpANTsxTsP8aTdVBD6cXksBEXt4KhBN7uVk')
    pub = priv.get_public_key()

    # the p2sh script and the corresponding address
    redeem_script = pub.get_segwit_address().to_script_pub_key()
    p2sh_addr = P2shAddress.from_script(redeem_script)

    # the UTXO of the P2SH-P2WPKH that we are trying to spend
    inp = TxInput('95c5cac558a8b47436a3306ba300c8d7af4cd1d1523d35da3874153c66d99b09', 0)

    # exact amount of UTXO we try to spent
    amount = 0.0014

    # the address to send funds to
    to_addr = P2pkhAddress('mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS')

    # the output sending 0.001 -- 0.0004 goes to miners as fee -- no change
    out = TxOutput(to_satoshis(0.001), to_addr.to_script_pub_key())

    # create a tx with at least one segwit input
    tx = Transaction([inp], [out], has_segwit=True)

    # script code is the script that is evaluated for a witness program type; each
    # witness program type has a specific template for the script code
    # script code that corresponds to P2WPKH (it is the classic P2PKH)
    script_code = pub.get_address().to_script_pub_key()

    # calculate signature using the appropriate script code
    # remember to include the original amount of the UTXO
    sig = priv.sign_segwit_input(tx, 0, script_code, to_satoshis(amount))

    # script_sig is the redeem script passed as a single element
    inp.script_sig = Script([redeem_script.to_hex()])

    # finally, the unlocking script is added as a witness
    tx.witnesses.append(Script([sig, pub.to_hex()]))

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + tx.serialize())
Пример #21
0
def main():
    # always remember to setup the network
    setup('testnet')

    #
    # This script spends from a P2SH address containing a P2PK script
    #

    # create transaction input from tx id of UTXO (contained 0.1 tBTC)
    txin = TxInput(
        '7db363d5a7fabb64ccce154e906588f1936f34481223ea8c1f2c935b0a0c945b', 0)

    # secret key needed to spend P2PK that is wrapped by P2SH
    p2pk_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
    p2pk_pk = p2pk_sk.get_public_key().to_hex()
    # create the redeem script - needed to sign the transaction
    redeem_script = Script([p2pk_pk, 'OP_CHECKSIG'])

    to_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    txout = TxOutput(to_satoshis(0.09), to_addr.to_script_pub_key())

    # no change address - the remaining 0.01 tBTC will go to miners)

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to create the signature for the txin -
    # note that the redeem script is passed to replace the scriptSig
    sig = p2pk_sk.sign_input(tx, 0, redeem_script)
    #print(sig)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, redeem_script.to_hex()])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
def main():
    # always remember to setup the network
    setup('testnet')

    priv0 = PrivateKey("cN1XE3ESGgdvr4fWsB7L3BcqXncUauF8Fo8zzv4Sm6WrkiGrsxrG")

    pub = priv0.get_public_key()
    fromAddress = pub.get_segwit_address()

    priv1 = PrivateKey("cN1XE3ESGgdvr4fWsB7L3BcqXncUauF8Fo8zzv4Sm6WrkiGrsxrG")

    # P2SH Script: OP_M <Public key 1> <Public key 2> ... OP_N OP_CHECKMULTISIG
    p2sh_redeem_script = Script(['OP_1', priv1.get_public_key().to_hex(), 'OP_1', 'OP_CHECKMULTISIG'])

    toAddress = P2wshAddress.from_script(p2sh_redeem_script)

    # set values
    txid = 'd222d91e2da368ac38e84aa615c557e4caeacce02aa5dbca10d840fd460fc938'
    vout = 0
    amount = to_satoshis(0.01764912)

    # create transaction input from tx id of UTXO
    txin = TxInput(txid, vout)
    redeem_script1 = Script(
        ['OP_DUP', 'OP_HASH160', priv0.get_public_key().to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'])

    # create transaction output
    txOut1 = TxOutput(to_satoshis(0.0001), toAddress.to_script_pub_key())
    txOut2 = TxOutput(to_satoshis(0.01744912), fromAddress.to_script_pub_key())

    # create transaction
    tx = Transaction([txin], [txOut1, txOut2], has_segwit=True)

    print("\nRaw transaction:\n" + tx.serialize())

    sig1 = priv0.sign_segwit_input(tx, 0, redeem_script1, amount)
    tx.witnesses.append(Script([sig1, pub.to_hex()]))

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + tx.serialize())
    print("\nTxId:", tx.get_txid())
def main():
    # always remember to setup the network
    setup('testnet')

    priv1 = PrivateKey("cN1XE3ESGgdvr4fWsB7L3BcqXncUauF8Fo8zzv4Sm6WrkiGrsxrG")
    priv2 = PrivateKey("cR8AkcbL2pgBswrHp28AftEznHPPLA86HiTog8MpNCibxwrsUcZ4")

    p2wsh_witness_script = Script([
        'OP_1',
        priv1.get_public_key().to_hex(),
        priv2.get_public_key().to_hex(), 'OP_2', 'OP_CHECKMULTISIG'
    ])

    fromAddress = P2wshAddress.from_script(p2wsh_witness_script)

    toAddress = P2wpkhAddress.from_address(
        "tltc1qedur7y052upuzd7wzh60d2f86szgpuspmml8ce")

    # set values
    txid = '2042195c40a92353f2ffe30cd0df8d177698560e81807e8bf9174a9c0e98e6c2'
    vout = 0
    amount = to_satoshis(0.01)

    # create transaction input from tx id of UTXO
    txin = TxInput(txid, vout)

    txOut1 = TxOutput(to_satoshis(0.0001), toAddress.to_script_pub_key())
    txOut2 = TxOutput(to_satoshis(0.0098), fromAddress.to_script_pub_key())

    tx = Transaction([txin], [txOut1, txOut2], has_segwit=True)

    sig1 = priv1.sign_segwit_input(tx, 0, p2wsh_witness_script, amount)
    tx.witnesses.append(Script(['OP_0', sig1, p2wsh_witness_script.to_hex()]))

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + tx.serialize())
    print("\nTxId:", tx.get_txid())
def get_issue_tx_info(conf, op_return_bstring, interactive=False):

    # load apropriate blockchain libraries
    if (conf.blockchain == 'litecoin'):
        from litecoinutils.setup import setup
        from litecoinutils.proxy import NodeProxy
        from litecoinutils.transactions import Transaction, TxInput, TxOutput
        from litecoinutils.keys import P2pkhAddress, P2wpkhAddress
        from litecoinutils.script import Script
        from litecoinutils.utils import to_satoshis, is_address_bech32
    else:
        from bitcoinutils.setup import setup
        from bitcoinutils.proxy import NodeProxy
        from bitcoinutils.transactions import Transaction, TxInput, TxOutput
        from bitcoinutils.keys import P2pkhAddress, P2wpkhAddress
        from bitcoinutils.script import Script
        from bitcoinutils.utils import to_satoshis, is_address_bech32

    op_return_hex = binascii.hexlify(op_return_bstring).decode()

    if interactive:
        print('\nConfigured values are:\n')
        print('working_directory:\t{}'.format(conf.working_directory))
        print('issuing_address:\t{}'.format(conf.issuing_address))
        print('blockchain:\t\t{}'.format(conf.blockchain))
        print('full_node_url:\t\t{}'.format(conf.full_node_url))
        print('full_node_rpc_user:\t{}'.format(conf.full_node_rpc_user))
        print('testnet:\t\t{}'.format(conf.testnet))
        print('tx_fee_per_byte:\t{}'.format(conf.tx_fee_per_byte))
        print('Bytes for OP_RETURN:\n{}'.format(op_return_bstring))
        print('Hex for OP_RETURN:\n{}'.format(op_return_hex))

    op_return_cert_protocol = op_return_hex

    if interactive:
        consent = input('Do you want to continue? [y/N]: ').lower() in ('y',
                                                                        'yes')
        if not consent:
            sys.exit()

    #import time
    #start = time.time()

    # test explicitly when non interactive
    if not conf.full_node_rpc_password and interactive:
        conf.full_node_rpc_password = getpass.getpass(
            '\nPlease enter the password for the node\'s RPC user: '******'testnet')
    else:
        setup('mainnet')

    host, port = conf.full_node_url.split(
        ':')  # TODO: update when NodeProxy accepts full url!
    proxy = NodeProxy(conf.full_node_rpc_user, conf.full_node_rpc_password,
                      host, port).get_proxy()

    # checks if address is native segwit or not.
    is_addr_bech32 = is_address_bech32(conf.issuing_address)

    # create transaction
    tx_outputs = []
    unspent = sorted(proxy.listunspent(1, 9999999, [conf.issuing_address]),
                     key=lambda x: x['amount'],
                     reverse=False)

    if not unspent:
        raise ValueError("No UTXOs found")

    issuing_pubkey = proxy.getaddressinfo(conf.issuing_address)['pubkey']

    tx = None
    tx_inputs = []
    tx_input_data = {}
    inputs_amount = 0

    # coin selection: use smallest UTXO and if not enough satoshis add next
    # smallest, etc. until sufficient tx fees are accumulated
    # TODO wrt dust instead of adding another UTXO we should just remove the
    # change_output and allocate the remaining (<546sats) to fees
    for utxo in unspent:
        txin = TxInput(utxo['txid'], utxo['vout'])
        tx_input_data[utxo['txid']] = utxo['amount']
        tx_inputs.append(txin)
        inputs_amount += utxo['amount']

        # currently bitcoin lib requires explicit instantiation; made method to
        # check this; update if/when the library fixes/automates this
        change_script_out = None
        if is_addr_bech32:
            change_script_out = P2wpkhAddress(
                conf.issuing_address).to_script_pub_key()
        else:
            change_script_out = P2pkhAddress(
                conf.issuing_address).to_script_pub_key()

        change_output = TxOutput(to_satoshis(inputs_amount), change_script_out)

        op_return_output = TxOutput(
            to_satoshis(0), Script(['OP_RETURN', op_return_cert_protocol]))
        tx_outputs = [change_output, op_return_output]

        tx = Transaction(tx_inputs, tx_outputs, has_segwit=is_addr_bech32)

        # sign transaction to get its size
        r = proxy.signrawtransactionwithwallet(tx.serialize())
        if r['complete'] == None:
            if interactive:
                sys.exit("Transaction couldn't be signed by node")
            else:
                raise RuntimeError("Transaction couldn't be signed by node")

        signed_tx = r['hex']
        signed_tx_size = proxy.decoderawtransaction(signed_tx)['vsize']

        # calculate fees and change in satoshis
        tx_fee = signed_tx_size * conf.tx_fee_per_byte

        change_amount = to_satoshis(inputs_amount) - tx_fee

        # the default Bitcoin (and litecoin) Core node doesn't allow the creation of dust
        # UTXOs https://bitcoin.stackexchange.com/questions/10986/what-is-meant-by-bitcoin-dust
        # if change is less than 546 (2940 for litecoin) satoshis that is considered dust
        # (with the default node parameters) then include another UTXO
        if conf.blockchain == 'litecoin':
            if change_amount >= 3000:
                break
        else:
            if change_amount >= 550:
                break

    if (change_amount < 0):
        if interactive:
            sys.exit(
                "Specified address cannot cover the transaction fee of: {} satoshis"
                .format(tx_fee))
        else:
            raise RuntimeError(
                "insufficient satoshis, cannot create transaction")

    # update tx out for change and re-sign
    tx.outputs[0].amount = change_amount

    return tx.serialize(), conf.issuing_address, tx_input_data
Пример #25
0
 def test_spend_p2sh(self):
     tx = Transaction([self.txin_spend], [self.txout2])
     sig = self.p2pk_sk.sign_input(tx, 0, self.p2pk_redeem_script)
     self.txin_spend.script_sig = Script(
         [sig, self.p2pk_redeem_script.to_hex()])
     self.assertEqual(tx.serialize(), self.spend_p2sh_result)
Пример #26
0
 def test_signed_send_to_p2sh(self):
     tx = Transaction([self.txin], [self.txout])
     sig = self.sk.sign_input(tx, 0, self.from_addr.to_script_pub_key())
     pk = self.sk.get_public_key().to_hex()
     self.txin.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.create_p2sh_and_send_result)
 def test_spend_non_std(self):
     tx = Transaction([self.txin_spend], [self.txout_spend])
     self.assertEqual(tx.serialize(), self.spend_non_std_tx_result)
def main():
    # always remember to setup the network
    setup('testnet')

    # create transaction input from tx id of UTXO (contained 0.39 tBTC)
    # 0.1 tBTC
    txin = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 0)
    # 0.29 tBTC
    txin2 = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 1)

    # create transaction output using P2PKH scriptPubKey (locking script)
    addr = P2pkhAddress('myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e')
    txout = TxOutput(
        to_satoshis(0.3),
        Script([
            'OP_DUP', 'OP_HASH160',
            addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))

    # create another output to get the change - remaining 0.01 is tx fees
    change_addr = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
    change_txout = TxOutput(
        to_satoshis(0.08),
        Script([
            'OP_DUP', 'OP_HASH160',
            change_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin, txin2], [txout, change_txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    #
    # use the private keys corresponding to the addresses that contains the
    # UTXOs we are trying to spend to create the signatures
    #

    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
    sk2 = PrivateKey('cVf3kGh6552jU2rLaKwXTKq5APHPoZqCP4GQzQirWGHFoHQ9rEVt')

    # we could have derived the addresses from the secret keys
    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    from_addr2 = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')

    # sign the first input
    sig = sk.sign_input(
        tx, 0,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]), SIGHASH_ALL | SIGHASH_ANYONECANPAY)
    #print(sig)

    # sign the second input
    sig2 = sk2.sign_input(
        tx, 1,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr2.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]), SIGHASH_SINGLE | SIGHASH_ANYONECANPAY)
    #print(sig2)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # get public key as hex
    pk2 = sk2.get_public_key()
    pk2 = pk2.to_hex()

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    txin2.script_sig = Script([sig2, pk2])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
Пример #29
0
 def test_signed_low_s_SIGALL_tx_1_input_2_outputs(self):
     tx = Transaction([self.txin], [self.txout, self.change_low_s_txout])
     sig = self.sk.sign_input( tx, 0, self.from_addr.to_script_pub_key() )
     pk = self.sk.get_public_key().to_hex()
     self.txin.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.core_tx_signed_low_s_SIGALL_result)
def main():
    # always remember to setup the network
    setup('testnet')

    #
    # This script spends from a P2SH address containing a CSV+P2PKH script as
    # created from examples/create_p2sh_csv_p2pkh.py
    #
    # We assume that some 11.1 tBTC have been send to that address and that we know
    # the txid and the specific UTXO index (or vout).
    #

    # set values
    relative_blocks = 20
    txid = '76c102821b916a625bd3f0c3c6e35d5c308b7c23e78b8866b06a3a466041db0a'
    vout = 0

    seq = Sequence(TYPE_RELATIVE_TIMELOCK, relative_blocks)

    # create transaction input from tx id of UTXO (contained 11.1 tBTC)
    txin = TxInput(txid, vout, sequence=seq.for_input_sequence())

    # secret key needed to spend P2PKH that is wrapped by P2SH
    p2pkh_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
    p2pkh_pk = p2pkh_sk.get_public_key().to_hex()
    p2pkh_addr = p2pkh_sk.get_public_key().get_address()

    # create the redeem script - needed to sign the transaction
    redeem_script = Script([
        seq.for_script(), 'OP_CHECKSEQUENCEVERIFY', 'OP_DROP', 'OP_DUP',
        'OP_HASH160',
        p2pkh_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
    ])

    # to confirm that address is the same as the one that the funds were sent
    #addr = P2shAddress.from_script(redeem_script)
    #print(addr.to_string())

    # send/spend to any random address
    to_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    txout = TxOutput(to_satoshis(11), to_addr.to_script_pub_key())

    # no change address - the remaining 0.1 tBTC will go to miners)

    # create transaction from inputs/outputs
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to create the signature for the txin -
    # note that the redeem script is passed to replace the scriptSig
    sig = p2pkh_sk.sign_input(tx, 0, redeem_script)
    #print(sig)

    # set the scriptSig (unlocking script) -- unlock the P2PKH (sig, pk) plus
    # the redeem script, since it is a P2SH
    txin.script_sig = Script([sig, p2pkh_pk, redeem_script.to_hex()])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())