Пример #1
0
def attach(config, backend, start, debug):
    """Create or attach to a SSH session on Lithops master VM"""
    if config:
        config = load_yaml_config(config)

    log_level = logging.INFO if not debug else logging.DEBUG
    setup_lithops_logger(log_level)

    config_ow = set_config_ow(backend)
    config = default_config(config, config_ow)

    if config['lithops']['mode'] != STANDALONE:
        raise Exception(
            'lithops attach method is only available for standalone backends')

    compute_config = extract_standalone_config(config)
    compute_handler = StandaloneHandler(compute_config)
    compute_handler.init()

    if start:
        compute_handler.backend.master.start()

    master_ip = compute_handler.backend.master.get_public_ip()
    user = compute_handler.backend.master.ssh_credentials['username']
    key_file = compute_handler.backend.master.ssh_credentials[
        'key_filename'] or '~/.ssh/id_rsa'
    key_file = os.path.abspath(os.path.expanduser(key_file))

    if not os.path.exists(key_file):
        raise Exception(f'Private key file {key_file} does not exists')

    print(f'Got master VM public IP address: {master_ip}')
    print(f'Loading ssh private key from: {key_file}')
    print('Creating SSH Connection to lithops master VM')
    cmd = (
        'ssh -o "UserKnownHostsFile=/dev/null" -o "StrictHostKeyChecking=no" '
        f'-i {key_file} {user}@{master_ip}')

    compute_handler.backend.master.wait_ready()

    sp.run(shlex.split(cmd))
Пример #2
0
class FunctionExecutor:
    """
    Executor abstract class that contains the common logic
    for the Localhost, Serverless and Standalone executors
    """

    def __init__(self, type=None, mode=None, config=None, backend=None, storage=None,
                 runtime=None, runtime_memory=None, rabbitmq_monitor=None,
                 workers=None, remote_invoker=None, log_level=None):

        mode = mode or type

        if mode is None:
            config = default_config(copy.deepcopy(config))
            mode = config['lithops']['mode']

        if mode not in [LOCALHOST, SERVERLESS, STANDALONE]:
            raise Exception("Function executor mode must be one of '{}', '{}' "
                            "or '{}'".format(LOCALHOST, SERVERLESS, STANDALONE))

        if log_level:
            setup_logger(log_level)

        if type is not None:
            logger.warning("'type' parameter is deprecated and it will be removed"
                           "in future releases. Use 'mode' parameter instead")

        config_ow = {'lithops': {'mode': mode}, mode: {}}

        if runtime is not None:
            config_ow[mode]['runtime'] = runtime
        if backend is not None:
            config_ow[mode]['backend'] = backend
        if runtime_memory is not None:
            config_ow[mode]['runtime_memory'] = int(runtime_memory)
        if remote_invoker is not None:
            config_ow[mode]['remote_invoker'] = remote_invoker

        if storage is not None:
            config_ow['lithops']['storage'] = storage
        if workers is not None:
            config_ow['lithops']['workers'] = workers
        if rabbitmq_monitor is not None:
            config_ow['lithops']['rabbitmq_monitor'] = rabbitmq_monitor

        self.config = default_config(copy.deepcopy(config), config_ow)

        self.log_active = logger.getEffectiveLevel() != logging.WARNING
        self.is_lithops_worker = is_lithops_worker()
        self.executor_id = create_executor_id()

        self.data_cleaner = self.config['lithops'].get('data_cleaner', True)
        if self.data_cleaner and not self.is_lithops_worker:
            spawn_cleaner = int(self.executor_id.split('-')[1]) == 0
            atexit.register(self.clean, spawn_cleaner=spawn_cleaner,
                            clean_cloudobjects=False)

        self.rabbitmq_monitor = self.config['lithops'].get('rabbitmq_monitor', False)

        if self.rabbitmq_monitor:
            if 'rabbitmq' in self.config and 'amqp_url' in self.config['rabbitmq']:
                self.rabbit_amqp_url = self.config['rabbitmq'].get('amqp_url')
            else:
                raise Exception("You cannot use rabbitmq_mnonitor since "
                                "'amqp_url' is not present in configuration")

        storage_config = extract_storage_config(self.config)
        self.internal_storage = InternalStorage(storage_config)
        self.storage = self.internal_storage.storage

        self.futures = []
        self.cleaned_jobs = set()
        self.total_jobs = 0
        self.last_call = None

        if mode == LOCALHOST:
            localhost_config = extract_localhost_config(self.config)
            self.compute_handler = LocalhostHandler(localhost_config)

            self.invoker = StandaloneInvoker(self.config,
                                             self.executor_id,
                                             self.internal_storage,
                                             self.compute_handler)
        elif mode == SERVERLESS:
            serverless_config = extract_serverless_config(self.config)
            self.compute_handler = ServerlessHandler(serverless_config,
                                                     storage_config)

            self.invoker = ServerlessInvoker(self.config,
                                             self.executor_id,
                                             self.internal_storage,
                                             self.compute_handler)
        elif mode == STANDALONE:
            standalone_config = extract_standalone_config(self.config)
            self.compute_handler = StandaloneHandler(standalone_config)

            self.invoker = StandaloneInvoker(self.config,
                                             self.executor_id,
                                             self.internal_storage,
                                             self.compute_handler)

        logger.info('{} Executor created with ID: {}'
                    .format(mode.capitalize(), self.executor_id))

    def __enter__(self):
        return self

    def _create_job_id(self, call_type):
        job_id = str(self.total_jobs).zfill(3)
        self.total_jobs += 1
        return '{}{}'.format(call_type, job_id)

    def call_async(self, func, data, extra_env=None, runtime_memory=None,
                   timeout=None, include_modules=[], exclude_modules=[]):
        """
        For running one function execution asynchronously

        :param func: the function to map over the data
        :param data: input data
        :param extra_env: Additional env variables for action environment
        :param runtime_memory: Memory to use to run the function
        :param timeout: Time that the functions have to complete their
                        execution before raising a timeout
        :param include_modules: Explicitly pickle these dependencies
        :param exclude_modules: Explicitly keep these modules from pickled
                                dependencies

        :return: future object.
        """
        job_id = self._create_job_id('A')
        self.last_call = 'call_async'

        runtime_meta = self.invoker.select_runtime(job_id, runtime_memory)

        job = create_map_job(self.config, self.internal_storage,
                             self.executor_id, job_id,
                             map_function=func,
                             iterdata=[data],
                             runtime_meta=runtime_meta,
                             runtime_memory=runtime_memory,
                             extra_env=extra_env,
                             include_modules=include_modules,
                             exclude_modules=exclude_modules,
                             execution_timeout=timeout)

        futures = self.invoker.run(job)
        self.futures.extend(futures)

        return futures[0]

    def map(self, map_function, map_iterdata, extra_args=None, extra_env=None,
            runtime_memory=None, chunk_size=None, chunk_n=None, timeout=None,
            invoke_pool_threads=500, include_modules=[], exclude_modules=[]):
        """
        For running multiple function executions asynchronously

        :param map_function: the function to map over the data
        :param map_iterdata: An iterable of input data
        :param extra_args: Additional args to pass to the function activations
        :param extra_env: Additional env variables for action environment
        :param runtime_memory: Memory to use to run the function
        :param chunk_size: the size of the data chunks to split each object.
                           'None' for processing the whole file in one function
                           activation.
        :param chunk_n: Number of chunks to split each object. 'None' for
                        processing the whole file in one function activation
        :param remote_invocation: Enable or disable remote_invocation mechanism
        :param timeout: Time that the functions have to complete their execution
                        before raising a timeout
        :param invoke_pool_threads: Number of threads to use to invoke
        :param include_modules: Explicitly pickle these dependencies
        :param exclude_modules: Explicitly keep these modules from pickled
                                dependencies

        :return: A list with size `len(iterdata)` of futures.
        """
        job_id = self._create_job_id('M')
        self.last_call = 'map'

        runtime_meta = self.invoker.select_runtime(job_id, runtime_memory)

        job = create_map_job(self.config, self.internal_storage,
                             self.executor_id, job_id,
                             map_function=map_function,
                             iterdata=map_iterdata,
                             runtime_meta=runtime_meta,
                             runtime_memory=runtime_memory,
                             extra_env=extra_env,
                             include_modules=include_modules,
                             exclude_modules=exclude_modules,
                             execution_timeout=timeout,
                             extra_args=extra_args,
                             obj_chunk_size=chunk_size,
                             obj_chunk_number=chunk_n,
                             invoke_pool_threads=invoke_pool_threads)

        futures = self.invoker.run(job)
        self.futures.extend(futures)

        return futures

    def map_reduce(self, map_function, map_iterdata, reduce_function,
                   extra_args=None, extra_env=None, map_runtime_memory=None,
                   reduce_runtime_memory=None, chunk_size=None, chunk_n=None,
                   timeout=None, invoke_pool_threads=500, reducer_one_per_object=False,
                   reducer_wait_local=False, include_modules=[], exclude_modules=[]):
        """
        Map the map_function over the data and apply the reduce_function across all futures.
        This method is executed all within CF.

        :param map_function: the function to map over the data
        :param map_iterdata:  An iterable of input data
        :param reduce_function:  the function to reduce over the futures
        :param extra_env: Additional environment variables for action environment. Default None.
        :param extra_args: Additional arguments to pass to function activation. Default None.
        :param map_runtime_memory: Memory to use to run the map function. Default None (loaded from config).
        :param reduce_runtime_memory: Memory to use to run the reduce function. Default None (loaded from config).
        :param chunk_size: the size of the data chunks to split each object. 'None' for processing
                           the whole file in one function activation.
        :param chunk_n: Number of chunks to split each object. 'None' for processing the whole
                        file in one function activation.
        :param remote_invocation: Enable or disable remote_invocation mechanism. Default 'False'
        :param timeout: Time that the functions have to complete their execution before raising a timeout.
        :param reducer_one_per_object: Set one reducer per object after running the partitioner
        :param reducer_wait_local: Wait for results locally
        :param invoke_pool_threads: Number of threads to use to invoke.
        :param include_modules: Explicitly pickle these dependencies.
        :param exclude_modules: Explicitly keep these modules from pickled dependencies.

        :return: A list with size `len(map_iterdata)` of futures.
        """
        self.last_call = 'map_reduce'
        map_job_id = self._create_job_id('M')

        runtime_meta = self.invoker.select_runtime(map_job_id, map_runtime_memory)

        map_job = create_map_job(self.config, self.internal_storage,
                                 self.executor_id, map_job_id,
                                 map_function=map_function,
                                 iterdata=map_iterdata,
                                 runtime_meta=runtime_meta,
                                 runtime_memory=map_runtime_memory,
                                 extra_args=extra_args,
                                 extra_env=extra_env,
                                 obj_chunk_size=chunk_size,
                                 obj_chunk_number=chunk_n,
                                 include_modules=include_modules,
                                 exclude_modules=exclude_modules,
                                 execution_timeout=timeout,
                                 invoke_pool_threads=invoke_pool_threads)

        map_futures = self.invoker.run(map_job)
        self.futures.extend(map_futures)

        if reducer_wait_local:
            self.wait(fs=map_futures)

        reduce_job_id = map_job_id.replace('M', 'R')

        runtime_meta = self.invoker.select_runtime(reduce_job_id, reduce_runtime_memory)

        reduce_job = create_reduce_job(self.config, self.internal_storage,
                                       self.executor_id, reduce_job_id,
                                       reduce_function, map_job, map_futures,
                                       runtime_meta=runtime_meta,
                                       runtime_memory=reduce_runtime_memory,
                                       reducer_one_per_object=reducer_one_per_object,
                                       extra_env=extra_env,
                                       include_modules=include_modules,
                                       exclude_modules=exclude_modules)

        reduce_futures = self.invoker.run(reduce_job)

        self.futures.extend(reduce_futures)

        for f in map_futures:
            f._produce_output = False

        return map_futures + reduce_futures

    def wait(self, fs=None, throw_except=True, return_when=ALL_COMPLETED,
             download_results=False, timeout=None, THREADPOOL_SIZE=128,
             WAIT_DUR_SEC=1):
        """
        Wait for the Future instances (possibly created by different Executor instances)
        given by fs to complete. Returns a named 2-tuple of sets. The first set, named done,
        contains the futures that completed (finished or cancelled futures) before the wait
        completed. The second set, named not_done, contains the futures that did not complete
        (pending or running futures). timeout can be used to control the maximum number of
        seconds to wait before returning.

        :param fs: Futures list. Default None
        :param throw_except: Re-raise exception if call raised. Default True.
        :param return_when: One of `ALL_COMPLETED`, `ANY_COMPLETED`, `ALWAYS`
        :param download_results: Download results. Default false (Only get statuses)
        :param timeout: Timeout of waiting for results.
        :param THREADPOOL_SIZE: Number of threads to use. Default 64
        :param WAIT_DUR_SEC: Time interval between each check.

        :return: `(fs_done, fs_notdone)`
            where `fs_done` is a list of futures that have completed
            and `fs_notdone` is a list of futures that have not completed.
        :rtype: 2-tuple of list
        """
        futures = fs or self.futures
        if type(futures) != list:
            futures = [futures]

        if not futures:
            raise Exception('You must run the call_async(), map() or map_reduce(), or provide'
                            ' a list of futures before calling the wait()/get_result() method')

        if download_results:
            msg = 'ExecutorID {} - Getting results...'.format(self.executor_id)
            fs_done = [f for f in futures if f.done]
            fs_not_done = [f for f in futures if not f.done]

        else:
            msg = 'ExecutorID {} - Waiting for functions to complete...'.format(self.executor_id)
            fs_done = [f for f in futures if f.ready or f.done]
            fs_not_done = [f for f in futures if not f.ready and not f.done]

        if not fs_not_done:
            return fs_done, fs_not_done

        logger.info(msg)
        if not self.log_active:
            print(msg)

        if is_unix_system() and timeout is not None:
            logger.debug('Setting waiting timeout to {} seconds'.format(timeout))
            error_msg = 'Timeout of {} seconds exceeded waiting for function activations to finish'.format(timeout)
            signal.signal(signal.SIGALRM, partial(timeout_handler, error_msg))
            signal.alarm(timeout)

        pbar = None
        error = False
        if not self.is_lithops_worker and not self.log_active:
            from tqdm.auto import tqdm

            if is_notebook():
                pbar = tqdm(bar_format='{n}/|/ {n_fmt}/{total_fmt}', total=len(fs_not_done))  # ncols=800
            else:
                print()
                pbar = tqdm(bar_format='  {l_bar}{bar}| {n_fmt}/{total_fmt}  ', total=len(fs_not_done), disable=False)

        try:
            if self.rabbitmq_monitor:
                logger.info('Using RabbitMQ to monitor function activations')
                wait_rabbitmq(futures, self.internal_storage, rabbit_amqp_url=self.rabbit_amqp_url,
                              download_results=download_results, throw_except=throw_except,
                              pbar=pbar, return_when=return_when, THREADPOOL_SIZE=THREADPOOL_SIZE)
            else:
                wait_storage(futures, self.internal_storage, download_results=download_results,
                             throw_except=throw_except, return_when=return_when, pbar=pbar,
                             THREADPOOL_SIZE=THREADPOOL_SIZE, WAIT_DUR_SEC=WAIT_DUR_SEC)

        except KeyboardInterrupt as e:
            if download_results:
                not_dones_call_ids = [(f.job_id, f.call_id) for f in futures if not f.done]
            else:
                not_dones_call_ids = [(f.job_id, f.call_id) for f in futures if not f.ready and not f.done]
            msg = ('ExecutorID {} - Cancelled - Total Activations not done: {}'
                   .format(self.executor_id, len(not_dones_call_ids)))
            if pbar:
                pbar.close()
                print()
            logger.info(msg)
            if not self.log_active:
                print(msg)
            error = True
            raise e

        except Exception as e:
            error = True
            raise e

        finally:
            self.invoker.stop()
            if is_unix_system():
                signal.alarm(0)
            if pbar and not pbar.disable:
                pbar.close()
                if not is_notebook():
                    print()
            if self.data_cleaner and not self.is_lithops_worker:
                self.clean(clean_cloudobjects=False)
            if not fs and error and is_notebook():
                del self.futures[len(self.futures)-len(futures):]

        if download_results:
            fs_done = [f for f in futures if f.done]
            fs_notdone = [f for f in futures if not f.done]
        else:
            fs_done = [f for f in futures if f.ready or f.done]
            fs_notdone = [f for f in futures if not f.ready and not f.done]

        return fs_done, fs_notdone

    def get_result(self, fs=None, throw_except=True, timeout=None,
                   THREADPOOL_SIZE=128, WAIT_DUR_SEC=1):
        """
        For getting the results from all function activations

        :param fs: Futures list. Default None
        :param throw_except: Reraise exception if call raised. Default True.
        :param verbose: Shows some information prints. Default False
        :param timeout: Timeout for waiting for results.
        :param THREADPOOL_SIZE: Number of threads to use. Default 128
        :param WAIT_DUR_SEC: Time interval between each check.

        :return: The result of the future/s
        """
        fs_done, _ = self.wait(fs=fs, throw_except=throw_except,
                               timeout=timeout, download_results=True,
                               THREADPOOL_SIZE=THREADPOOL_SIZE,
                               WAIT_DUR_SEC=WAIT_DUR_SEC)
        result = []
        fs_done = [f for f in fs_done if not f.futures and f._produce_output]
        for f in fs_done:
            if fs:
                # Process futures provided by the user
                result.append(f.result(throw_except=throw_except,
                                       internal_storage=self.internal_storage))
            elif not fs and not f._read:
                # Process internally stored futures
                result.append(f.result(throw_except=throw_except,
                                       internal_storage=self.internal_storage))
                f._read = True

        logger.debug("ExecutorID {} Finished getting results"
                     .format(self.executor_id))

        if len(result) == 1 and self.last_call != 'map':
            return result[0]

        return result

    def plot(self, fs=None, dst=None):
        """
        Creates timeline and histogram of the current execution in dst_dir.

        :param dst_dir: destination folder to save .png plots.
        :param dst_file_name: prefix name of the file.
        :param fs: list of futures.
        """
        ftrs = self.futures if not fs else fs

        if type(ftrs) != list:
            ftrs = [ftrs]

        ftrs_to_plot = [f for f in ftrs if (f.ready or f.done) and not f.error]

        if not ftrs_to_plot:
            logger.debug('ExecutorID {} - No futures ready to plot'
                         .format(self.executor_id))
            return

        logging.getLogger('matplotlib').setLevel(logging.WARNING)
        from lithops.plots import create_timeline, create_histogram

        msg = 'ExecutorID {} - Creating execution plots'.format(self.executor_id)

        logger.info(msg)
        if not self.log_active:
            print(msg)

        create_timeline(ftrs_to_plot, dst)
        create_histogram(ftrs_to_plot, dst)

    def clean(self, fs=None, cs=None, clean_cloudobjects=True, spawn_cleaner=True):
        """
        Deletes all the temp files from storage. These files include the function,
        the data serialization and the function invocation results. It can also clean
        cloudobjects.

        :param fs: list of futures to clean
        :param cs: list of cloudobjects to clean
        :param clean_cloudobjects: true/false
        :param spawn_cleaner true/false
        """

        os.makedirs(CLEANER_DIR, exist_ok=True)

        def save_data_to_clean(data):
            with tempfile.NamedTemporaryFile(dir=CLEANER_DIR, delete=False) as temp:
                pickle.dump(data, temp)

        if cs:
            data = {'cos_to_clean': list(cs),
                    'storage_config': self.internal_storage.get_storage_config()}
            save_data_to_clean(data)
            if not fs:
                return

        futures = fs or self.futures
        futures = [futures] if type(futures) != list else futures
        present_jobs = {create_job_key(f.executor_id, f.job_id) for f in futures
                        if f.executor_id.count('-') == 1}
        jobs_to_clean = present_jobs - self.cleaned_jobs

        if jobs_to_clean:
            logger.info("ExecutorID {} - Cleaning temporary data"
                        .format(self.executor_id))
            data = {'jobs_to_clean': jobs_to_clean,
                    'clean_cloudobjects': clean_cloudobjects,
                    'storage_config': self.internal_storage.get_storage_config()}
            save_data_to_clean(data)
            self.cleaned_jobs.update(jobs_to_clean)

        if (jobs_to_clean or cs) and spawn_cleaner:
            log_file = open(CLEANER_LOG_FILE, 'a')
            cmdstr = '{} -m lithops.scripts.cleaner'.format(sys.executable)
            sp.Popen(cmdstr, shell=True, stdout=log_file, stderr=log_file)

    def dismantle(self):
        self.compute_handler.dismantle()

    def init(self):
        self.compute_handler.init()

    def __exit__(self, exc_type, exc_value, traceback):
        self.invoker.stop()