discount=0.99, target_freq=10, verbose=True, print_every=10) ''' agent = DQNAgent(action_set=[0, 1, 2], reward_function=mountain_car_reward_function, feature_extractor=MountainCarIdentityFeature(), hidden_dims=[50, 50], learning_rate=5e-4, buffer_size=50000, batch_size=64, num_batches=100, starts_learning=5000, final_epsilon=0.02, discount=0.99, target_freq=10, verbose=True, print_every=10) _, _, rewards = live(agent=agent, environment=env, num_episodes=episodes, max_timesteps=200, verbose=True, print_every=50) np.save(os.path.join(reward_path, file_name), rewards) agent.save(path=os.path.join(agent_path, file_name + '.pt'))
def __init__(self, options): super(atropine, self).__init__() self.vchannels = collections.OrderedDict() self.fullscreen = options.fullscreen self.no_escape = options.no_escape self.max_brightness = options.max_brightness gm = guide_manager.guide_manager(self, options) cm = callsign_manager.callsign_manager(self, options) im = icon_manager.icon_manager(cm, options) gm.new_guide.connect(cm.new_guide) gm.new_guide.connect(self.guide_update) self.vchannel = None self.source = None self.resume_source = None self.channel_file = options.channel_file self.video = video_vlc.video_vlc() self.sources = dict() if len(options.hdhr_lineup_id): for lineup, tuners in options.hdhr_lineup_id.iteritems(): self.sources[lineup] = source_hdhr.source_hdhr( self.video, tuners) else: self.sources[''] = source_hdhr.source_hdhr(self.video) self.live = live.live(self, self.video, im, self.vchannels) self.guide = guide.guide_widget(self, options, self.video, im, self.vchannels) self.blank = Qt.QWidget(self) self.addWidget(self.live) self.addWidget(self.guide) self.addWidget(self.blank) self.video.setParent(self) self.video.show() self.resume_widget = None self.setCurrentWidget(self.live) self.live.clicked.connect( lambda w=self.guide: self.setCurrentWidget(w)) self.guide.done.connect(lambda w=self.live: self.setCurrentWidget(w)) self.paused_start = options.paused Qt.QTimer.singleShot(0, self.start) ss = """ QWidget { border: none; background-color: rgb(60, 75, 90); } QLabel { font-family: sans-serif; font: 24pt; color: white; } video, video_proxy, guide_widget now_widget, time_header_widget { background-color: black } guide_widget station_logo_widget { background-color: rgb(150, 170, 190); } guide_widget program_info_widget { background-color: rgb(30, 30, 30); border: 2px solid black; } guide_widget program_info_widget QWidget { background-color: rgb(30, 30, 30); } guide_header_widget { background-color: darkblue; } station_info_guide_large QWidget { background-color: rgb(90, 105, 120); } info_widget, info_widget QWidget { background: none; } program_label { padding: 4px; border: 2px solid black; } program_label:focus { border: 6px solid white; } time_header_widget, now_widget { padding: 8px; } station_info_widget { padding: 6px; } osd_widget { margin: 50px; } guide_widget > station_info_widget { padding: 4px; font-size: 20pt; } QProgressBar { border: none; color: red; } QProgressBar::chunk { background-color: red; } """ # https://raw.githubusercontent.com/MythTV/mythtv/master/mythtv/themes/default/categories.xml cat_file = os.path.join(__location__, 'categories.xml') cc = categories.category_colors(cat_file) for key, value in cc.iteritems(): c = Qt.QColor(*value) c = Qt.QColor.fromHsvF(c.hsvHueF(), c.hsvSaturationF(), min(c.valueF(), self.max_brightness)) #c = Qt.QColor.fromHslF(c.hslHueF(), c.hslSaturationF(), min(c.lightnessF(), self.max_brightness)) c = str(c.getRgb()[0:3]) ss += 'QLabel[category="%s"] { background-color: rgb%s; }\n' % ( key, c) self.setStyleSheet(ss)
from sklearn.naive_bayes import BernoulliNB from sklearn.tree import DecisionTreeClassifier import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn import metrics import warnings import math from sklearn import preprocessing p = "./models/shape_predictor_68_face_landmarks.dat" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(p) from calibration import calibration from live import live #Run Calibration mean, std = calibration() print(mean, std) data, result = live(mean, std) for D, r in zip(data, result): print(D) print(r) print('\n')
channel = client.get_channel(840211266869919784) await channel.send(f"{member} has left the server.") @tasks.loop(seconds=300) async def count(): temp = client.get_channel(839976544692731985) channel = client.get_channel(840442030785691678) await channel.edit(name="Server Users: " + str(temp.guild.member_count)) @client.command() async def clear(ctx, amount=sys.maxsize - 1): if (amount != sys.maxsize - 1): await ctx.channel.purge(limit=amount + 1) else: await ctx.channel.purge(limit=amount) @client.command() async def test(ctx): await ctx.send(ctx.guild.member_count) # End of Bot live() client.run(token)
action_set=[0, 1, 2], # reward_function=functools.partial(cartpole_reward_function, reward_type='sparse'), reward_function=functools.partial(Forex_reward_function), feature_extractor=ForexIdentityFeature(), hidden_dims=[50, 50], learning_rate=5e-4, buffer_size=5000, # batch_size=16, batch_size=8, num_batches=100, starts_learning=100, final_epsilon=0.02, discount=0.99, target_freq=10, verbose=False, print_every=10) _, _, rewards = live( agent=agent, environment=env, # num_episodes=100, # max_timesteps=3601, num_episodes=500, max_timesteps=3600, verbose=True, print_every=50) file_name = '|'.join(['dqn', str(seed)]) np.save(os.path.join(reward_path, file_name), rewards) agent.save(path=os.path.join(agent_path, file_name + '.pt'))