def test_calcBetaLme():
    # Test data with large n = 1500
    X = np.ones((2000, 4))
    X[:, 0] = np.random.normal(0, 1, 2000)
    X[:, 1] = np.random.normal(2, 2, 2000)
    X[:, 2] = np.linspace(-1,1,2000)
    X[:, 3] = X[:,2]**2
    Y = np.random.normal(3,1,2000)
    # Create linear regression object
    regr = linear_model.LinearRegression()
    # Train the model using the training sets
    regr.fit(X, Y)
    test_betas = regr.coef_
    # My function, should produce same results if groups are all the same:
    lme = calcBetaLme(Y, X[:,0], X[:,1], X[:,2], X[:,3], np.repeat(1,2000))
    lme_thrs = calcBetaLme(Y, X[:,0], X[:,1], X[:,2], X[:,3], np.repeat(1,2000), -40000)
    lme_thrs1 = calcBetaLme(Y, X[:,0], X[:,1], X[:,2], X[:,3], np.repeat(1,2000), 10)
    # Compare betas
    my_betas = lme.ravel()[[0,2]]
    my_betas_thrs = lme_thrs.ravel()[[0,2]]
    my_betas_thrs1 = lme_thrs1.ravel()[[0,2]]
    assert max(abs(my_betas - test_betas[:2])) < 0.005
    assert max(abs(my_betas_thrs - test_betas[:2])) < 0.005
    assert (test_betas != my_betas_thrs1)
Пример #2
0
        parameters = merge_cond(behav_cond, task_cond1, task_cond2, task_cond3, task_cond4)
        neural_prediction = events2neural_extend(parameters,TR, n_vols)
        gain, loss, linear_dr, quad_dr = getRegressor(TR, n_vols, hrf_at_trs, neural_prediction)
        data, gain, loss, linear_dr, quad_dr = deleteOutliers(data, gain, loss, linear_dr, quad_dr, i, run, dvars_out, fd_out)
        run_count[j-1] = data.shape[3]     ## dummy variable indicating the groups
        data_full = np.concatenate((data_full,data),axis=3)
        gain_full = np.concatenate((gain_full,gain),axis=0)
        loss_full = np.concatenate((loss_full,loss),axis=0)
        linear_full = np.concatenate((linear_full,linear_dr),axis=0)
        quad_full = np.concatenate((quad_full,quad_dr),axis=0)
        
    run_group = np.concatenate((np.repeat(1, run_count[0]), 
                                np.repeat(2, run_count[1]), np.repeat(3, run_count[2])), axis=0)
    thrshd = 400 ## set a threshold to idenfity the voxels inside the brain
    print "calculating parameters of subject "+str(i)
    beta = calcBetaLme(data_full, gain_full, loss_full, linear_full, quad_full, run_group, thrshd)
    sig_level = 0.05
    sig_gain_prop[i-1], sig_loss_prop[i-1] = calcSigProp(beta, sig_level)
    write=pathtofolder + 'ds005/sub0'+str(i).zfill(2)+'/model/model001/onsets/sub0'+str(i).zfill(2)+'_lme_beta.txt'
    np.savetxt(write, beta)
    anov_test = calcAnov(data_full, run_group, thrshd)
    anov_prop[i-1] = anovStat(anov_test)

write=pathtofolder + 'ds005/models/lme_sig_gain_prop.txt'
np.savetxt(write,  sig_gain_prop)
write=pathtofolder + 'ds005/models/lme_sig_loss_prop.txt'
np.savetxt(write,  sig_loss_prop)
write=pathtofolder + 'ds005/models/anova_prop.txt'
np.savetxt(write,  anov_prop)

Пример #3
0
        parameters = merge_cond(behav_cond, task_cond1, task_cond2, task_cond3, task_cond4)
        neural_prediction = events2neural_extend(parameters,TR, n_vols)
        gain, loss, linear_dr, quad_dr = getRegressor(TR, n_vols, hrf_at_trs, neural_prediction)
        data, gain, loss, linear_dr, quad_dr = deleteOutliers(data, gain, loss, linear_dr, quad_dr, i, run, dvars_out, fd_out)
        run_count[j-1] = data.shape[3]     ## dummy variable indicating the groups
        data_full = np.concatenate((data_full,data),axis=3)
        gain_full = np.concatenate((gain_full,gain),axis=0)
        loss_full = np.concatenate((loss_full,loss),axis=0)
        linear_full = np.concatenate((linear_full,linear_dr),axis=0)
        quad_full = np.concatenate((quad_full,quad_dr),axis=0)
        
    run_group = np.concatenate((np.repeat(1, run_count[0]), 
                                np.repeat(2, run_count[1]), np.repeat(3, run_count[2])), axis=0)
    thrshd = 400 ## set a threshold to idenfity the voxels inside the brain
    print "calculating parameters of subject "+str(i)
    beta = calcBetaLme(data_full, gain_full, loss_full, linear_full, quad_full, run_group, thrshd)
    sig_level = 0.05
    sig_gain_prop[i-1], sig_loss_prop[i-1] = calcSigProp(beta, sig_level)
    write=pathtofolder + 'ds005/sub0'+str(i).zfill(2)+'/model/model001/onsets/sub0'+str(i).zfill(2)+'_lme_beta.txt'
    np.savetxt(write, beta)
    anov_test = calcAnov(data_full, run_group)
    anov_prop[i-1] = anovStat(anov_test)

write=pathtofolder + 'ds005/models/lme_sig_gain_prop.txt'
np.savetxt(write,  sig_gain_prop)
write=pathtofolder + 'ds005/models/lme_sig_loss_prop.txt'
np.savetxt(write,  sig_loss_prop)
write=pathtofolder + 'ds005/models/anova_prop.txt'
np.savetxt(write,  anov_prop)