Пример #1
0
def test_yolov2_post_process():
    tf.InteractiveSession()

    image_size = [96, 64]
    batch_size = 2
    classes = range(5)
    anchors = [(0.1, 0.2), (1.2, 1.1)]
    data_format = "NHWC"
    score_threshold = 0.25
    nms_iou_threshold = 0.5

    model = YoloV2(
        image_size=image_size,
        batch_size=batch_size,
        classes=classes,
        anchors=anchors,
        data_format=data_format,
        score_threshold=score_threshold,
        nms_iou_threshold=nms_iou_threshold,
    )

    post_process = Sequence([
        FormatYoloV2(
            image_size=image_size,
            classes=classes,
            anchors=anchors,
            data_format=data_format,
        ),
        ExcludeLowScoreBox(threshold=score_threshold),
        NMS(
            iou_threshold=nms_iou_threshold,
            classes=classes,
        ),
    ])

    shape = (batch_size, len(anchors) * (len(classes) + 5),
             image_size[0] // 32, image_size[1] // 32)
    np_output = np.random.uniform(-2., 2., size=shape).astype(np.float32)
    output = tf.constant(np_output)

    ys = model.post_process(output)

    expected_ys = post_process(outputs=np_output)["outputs"]

    for y, expected_y in zip(ys, expected_ys):
        assert np.allclose(y.eval(), expected_y), (y.eval(), expected_y)
Пример #2
0
def test_format_yolov2_shape():
    image_size = [128, 96]
    batch_size = 2
    classes = range(8)
    anchors = [(0.1, 0.2), (1.2, 1.1)]

    post_process = FormatYoloV2(
        image_size=image_size,
        classes=classes,
        anchors=anchors,
        data_format="NCHW",
    )

    shape = (batch_size, len(anchors) * (len(classes) + 5), image_size[0]//32, image_size[1]//32)
    output = np.random.uniform(-2., 2., size=shape).astype(np.float32)

    y = post_process(output)["outputs"]

    expected_shape = (batch_size, len(anchors) * len(classes) * image_size[0]//32 * image_size[1]//32, 6)

    assert expected_shape == y.shape
Пример #3
0
# pretrain
IS_PRETRAIN = False
PRETRAIN_VARS = []
PRETRAIN_DIR = ""
PRETRAIN_FILE = ""

PRE_PROCESSOR = Sequence([ResizeWithGtBoxes(size=IMAGE_SIZE), DivideBy255()])
anchors = [(1.3221, 1.73145), (3.19275, 4.00944), (5.05587, 8.09892),
           (9.47112, 4.84053), (11.2364, 10.0071)]
score_threshold = 0.05
nms_iou_threshold = 0.5
nms_max_output_size = 100
POST_PROCESSOR = Sequence([
    FormatYoloV2(
        image_size=IMAGE_SIZE,
        classes=CLASSES,
        anchors=anchors,
        data_format=DATA_FORMAT,
    ),
    ExcludeLowScoreBox(threshold=score_threshold),
    NMS(
        iou_threshold=nms_iou_threshold,
        max_output_size=nms_max_output_size,
        classes=CLASSES,
    ),
])

NETWORK = EasyDict()
NETWORK.OPTIMIZER_CLASS = tf.train.MomentumOptimizer
NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9}
NETWORK.LEARNING_RATE_FUNC = tf.train.piecewise_constant
# In the origianl yolov2 Paper, with a starting learning rate of 10−3, dividing it by 10 at 60 and 90 epochs.