Пример #1
0
def get_basics(Horizon_T, day):
    AMB_network = top(network="ABM")
    AMB_network = add_loads_to_topology(AMB_network)
    AMB_network = add_generators_to_topology(AMB_network)
    H, h = AMB_network.H, AMB_network.h
    print("Topology loaded")
    """
    Tweak case  : add a fake generator
    """
    node_name = "MDN"
    AMB_network.add_generator(
        Generator("diesel_gen",
                  node_name,
                  0,
                  0,
                  Pmax=200,
                  Pmin=0,
                  marginal_cost=[0, 0]))
    """
    Get the load data
    """
    d = get_load_matrix(AMB_network, day, Horizon_T)
    d = tweak_d(d, load_factor=1, index_to_tweak=10, load_factor_for_node=1)
    print("Load historical data loaded and tweaked")
    """
    Get the bid matrices
    """
    b, P_max, P_min = get_producers_matrices(AMB_network, day, Horizon_T)
    print("Load historical bids")
    """
    Load now the topology of generators
    """
    Mn = AMB_network.Mn
    return H, h, Mn, b, P_max, P_min, d
Пример #2
0
def launch_model():
    AMB_network = top(network="ABM")
    """
    Create loads on each node
    """
    Existing_sub_nodes = ld.get_existing_subnodes()
    historical_loads = ld.get_historical_loads()
    Simp_nodes_dict = ld.get_nodes_to_subnodes()
    Simp_nodes_dict["MAN"] = ["MAN2201"]
    Existing_sub_nodes.append("MAN2201")
    nodes_to_index = pd.read_csv(stored_path.main_path +
                                 '/data/ABM/ABM_Nodes.csv')
    for i, node in enumerate(AMB_network.names_2_nodes.keys()):
        # print("Load added at node : " + node)
        index = nodes_to_index[nodes_to_index["Node names"] ==
                               node]["Node index"].values[0]
        load = Load(node, node, index, type="real_load")
        load.add_load_data(historical_loads, Simp_nodes_dict,
                           Existing_sub_nodes)
        AMB_network.add_load(load)

    file_path = stored_path.main_path + '/data/generators/generator_adjacency_matrix_dict1.json'
    with open(file_path) as f:
        data = json.loads(f.read())

    number_of_added_generators = 0
    for name_generator in data.keys():
        L_ = data[name_generator]
        try:
            if type(L_[0]) != float:
                if not math.isnan(L_[-2]):
                    if L_[-1] == "Gas" or L_[-1] == "Biogas":
                        add = 35
                    if L_[-1] == "Geothermal":
                        add = 10
                    if L_[-1] == "Coal":
                        add = 50
                    if L_[-1] == "Diesel":
                        add = 150

                    if L_[-1] == 'Hydro':
                        P_min = 0.1 * L_[-2]
                    else:
                        P_min = 0

                    g = Generator(name_generator,
                                  L_[0],
                                  0,
                                  L_[-1],
                                  Pmax=L_[-2],
                                  Pmin=P_min,
                                  marginal_cost=add + np.array(L_[1]))
                    AMB_network.add_generator(g)
                    number_of_added_generators += 1
        except:
            pass

    node_name = "MDN"
    # index = 10
    AMB_network.add_generator(
        Generator("diesel_gen",
                  node_name,
                  0,
                  0,
                  Pmax=200,
                  Pmin=0,
                  marginal_cost=[0, 0]))
    # AMB_network.generators[10]
    """
    get d_t for day 12 and trading period 1
    """
    Horizon_T = 48
    day = 2
    d = []
    for k, node in enumerate(AMB_network.loads.keys()):
        d.append([])
        for j in range(day * 48, day * 48 + Horizon_T):
            d[k].append(
                1 * 1000 *
                AMB_network.loads[node][0].return_d(1 + j // 48, j % 48 + 1))

    # d[1] = d[1]*2
    d = np.array(d)
    # # d[1] = d[1]*10
    #
    # import matplotlib.pyplot as plt
    # plt.plot(sum(d))
    # plt.show()
    #
    # sum(d[:,0])
    # d = np.zeros((d.shape[0], Horizon_T))
    # d = P_min
    """
    Add topology specific characteristics
    """
    n_generator = AMB_network.get_number_of_gen()
    b = np.zeros((n_generator, Horizon_T))
    P_max = np.zeros((n_generator, Horizon_T))
    P_min = np.zeros((n_generator, Horizon_T))
    for node in AMB_network.generators.keys():
        for g in AMB_network.generators[node]:
            for i, j in enumerate(range(day * 48, day * 48 + Horizon_T)):
                if g.name == "diesel_gen":
                    pmax, pmin, a = 500, 0, 200
                else:
                    pmax, pmin, a = LMP.get_P_min_a(g.name, 1 + j // 48,
                                                    j % 48 + 1, g.type)
                P_max[g.index, i] = pmax
                P_min[g.index, i] = pmin if g.type == "Hydro" else 0
                b[g.index, i] = a if a > 0 else np.random.randint(0, 100)

    print("Loading data done")

    list_of_generator = {}
    for node in AMB_network.generators.keys():
        for g in AMB_network.generators[node]:
            list_of_generator[g.index] = g
    new_dict = {}
    for key in sorted(list_of_generator.keys()):
        new_dict[key] = list_of_generator[key]

    H, h = AMB_network.H, AMB_network.h
    Mn = AMB_network.Mn
    save = d[10].copy()
    save_d = d.copy()
    d[10] = save
    d = 1.3 * save_d.copy()
    d[10] = save * 12.1
    cost_of_battery = 200 * 1000 / (2 * 365)
    model = run_program(d,
                        b,
                        P_max,
                        P_min,
                        H,
                        h,
                        Mn,
                        i_battery=None,
                        z_start=1,
                        cost_of_battery=cost_of_battery)

    beta = np.array([[pyo.value(model.beta[t, i]) for i in range(Horizon_T)]
                     for t in range(H.shape[0])])
    save_results(model, i_test=4)

    print("\n___ OBJ ____")
    print(pyo.value(model.obj))
Пример #3
0
if __name__ == '__main__':
    """
    Real test
    """
    from lmpnz.Network.Topology.Topology import Topology as top
    import lmpnz.Network.PriceBids.Load.Load as ld
    from lmpnz.Network.PriceBids.Generator.Generator import Generator
    from lmpnz.Network.PriceBids.Load.Load import Load
    from lmpnz.GuillaumeExample import LMP
    import pandas as pd
    import stored_path
    import json
    import math

    AMB_network = top(network="ABM")
    """
    Create loads on each node
    """
    Existing_sub_nodes = ld.get_existing_subnodes()
    historical_loads = ld.get_historical_loads()
    Simp_nodes_dict = ld.get_nodes_to_subnodes()
    Simp_nodes_dict["MAN"] = ["MAN2201"]
    Existing_sub_nodes.append("MAN2201")
    nodes_to_index = pd.read_csv(stored_path.main_path +
                                 '/data/ABM/ABM_Nodes.csv')
    for i, node in enumerate(AMB_network.names_2_nodes.keys()):
        # print("Load added at node : " + node)
        index = nodes_to_index[nodes_to_index["Node names"] ==
                               node]["Node index"].values[0]
        load = Load(node, node, index, type="real_load")