def load_data(dataset): if dataset == 'mnist': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_mnist(num_train=1000, mean_subtraction=True, random_roated_labels=False) elif dataset == 'cifar': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_cifar10(num_train=1000, mean_subtraction=True, random_roated_labels=False) elif dataset == 'stl10': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_stl10(num_train=1000, mean_subtraction=True, random_roated_labels=False) else: raise NotImplementedError return train_image, train_label, valid_image, valid_label, test_image, test_label
import numpy as np import tensorflow as tf # tf.enable_eager_execution() # import gpr import load_dataset # import nngp from gpflow import settings import tqdm m = 20000 (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_mnist(num_train=m, mean_subtraction=True, random_roated_labels=False) # %% def pi(y, f): return 1 / (1 + tf.exp(-y * f)) def GP_prob_iteration(fs_old, ys, K): N = ys.get_shape().as_list()[0] # print(N,type(N)) # W = tf.diag([pi(1,fs_old[i])*(1-pi(1,fs_old[i])) for i,y in enumerate(ys)]) W = tf.diag(tf.map_fn(lambda f: pi(1, f) * (1 - pi(1, f)), fs_old)) B = tf.eye(N, dtype="float64") + tf.matmul(W**0.5, tf.matmul(K, W**0.5)) L = tf.cholesky(B)
from base_function import Sigmoid, Linear, show_W, add_dummy_variable, data_T, OneofK from nnet_init import W_init, Activation_function from load_dataset import load_mnist from nn_tr import nnet_calculation, Back_propagation import numpy as np X, y, X_test, y_test = load_mnist(only_binary=False) print "dataset reading complete,X.shape:", np.shape(X)[0], np.shape(X)[1] print "dataset reading complete,y.shape:", np.shape(y)[0] print "adding dummy variable to X.." X = add_dummy_variable(X) print "dummy variable adding complete,X.shape:", np.shape(X)[0], np.shape(X)[1] print 'data tranposing..' X, y = data_T(X, y) print "data tranposing complete,X.shape:", np.shape(X)[0], np.shape(X)[1] print "data tranposing complete,y.shape:", np.shape(y)[0] print 'one of k coding to y' y = OneofK(y) print 'one of k coding complete,y.shape:', np.shape(y) print "initial weight.." W = W_init([100], X) print "weight initialing complete" print 'weight shape takes the form as follow' print 'W_shape:', np.shape(W) print 'initialing activation function..' AF = Activation_function([Sigmoid, Sigmoid, Sigmoid]) print 'activation function initialing complete'
y_1 = 6 y_2 = 8 """Loading data Variables --------- X_train : list of lists, (n_samples, n_features) = (60000,784) The features of training set y_train : array, shape(n_samples,) = (60000,) The labels of training set range from 0 to 9 X_test : list of lists, (n_sampels, n_features) = (10000, 784) The features of test set y_test : array, shape(n_samples,) = (10000,) """ X_train, y_train, X_test, y_test = load_mnist(only_binary=True, y_1=y_1, y_2=y_2) # #Separating X_train according to class label X_train_0 = X_train[y_train == y_1, :] X_train_1 = X_train[y_train == y_2, :] #Training and Predicting w_star, w_0 = FDA_train(X_train_0, X_train_1) y_pred = FDA_test(X_test, w_star, w_0) #one hot encoding of y_test(1-of-K code scheme) y_test = y_test[:, np.newaxis] y_0 = (y_test == y_1) y_1 = (y_test == y_2) y_test = np.hstack((y_0, y_1)).astype(int)
def run_nngp_eval(hparams, run_dir): """Runs experiments.""" tf.gfile.MakeDirs(run_dir) # Write hparams to experiment directory. with tf.gfile.GFile(run_dir + '/hparams', mode='w') as f: f.write(hparams.to_proto().SerializeToString()) tf.logging.info('Starting job.') tf.logging.info('Hyperparameters') tf.logging.info('---------------------') tf.logging.info(hparams) tf.logging.info('---------------------') tf.logging.info('Loading data') # Get the sets of images and labels for training, validation, and # # test on dataset. if FLAGS.dataset == 'mnist': ( train_image, train_label, #valid_image, valid_label, test_image, test_label) = load_dataset.load_mnist(num_train=FLAGS.num_train, mean_subtraction=True, random_rotated_labels=False) elif FLAGS.dataset == 'cifar10': ( train_image, train_label, #valid_image, valid_label, test_image, test_label) = load_dataset.load_cifar10(num_train=FLAGS.num_train, mean_subtraction=True) else: raise NotImplementedError tf.logging.info('Building Model') if hparams.nonlinearity == 'tanh': nonlin_fn = tf.tanh elif hparams.nonlinearity == 'relu': nonlin_fn = tf.nn.relu else: raise NotImplementedError with tf.Session() as sess: # Construct NNGP kernel nngp_kernel = nngp.NNGPKernel( depth=hparams.depth, weight_var=hparams.weight_var, bias_var=hparams.bias_var, mu_2=hparams.mu_2, nonlin_fn=nonlin_fn, grid_path=FLAGS.grid_path, n_gauss=FLAGS.n_gauss, n_var=FLAGS.n_var, n_corr=FLAGS.n_corr, max_gauss=FLAGS.max_gauss, max_var=FLAGS.max_var, use_fixed_point_norm=FLAGS.use_fixed_point_norm) # Construct Gaussian Process Regression model model = gpr.GaussianProcessRegression(train_image, train_label, kern=nngp_kernel) start_time = time.time() tf.logging.info('Training') # For large number of training points, we do not evaluate on full set to # save on training evaluation time. if FLAGS.num_train <= 5000: acc_train, mse_train, var_train, norm_train, final_eps = do_eval( sess, model, train_image[:FLAGS.num_eval], train_label[:FLAGS.num_eval]) tf.logging.info('Evaluation of training set (%d examples) took ' '%.3f secs' % (min(FLAGS.num_train, FLAGS.num_eval), time.time() - start_time)) else: acc_train, mse_train, var_train, norm_train, final_eps = do_eval( sess, model, train_image[:1000], train_label[:1000]) tf.logging.info('Evaluation of training set (%d examples) took ' '%.3f secs' % (1000, time.time() - start_time)) # start_time = time.time() # tf.logging.info('Validation') # acc_valid, mse_valid, var_valid, norm_valid, _ = do_eval( # sess, model, valid_image[:FLAGS.num_eval], # valid_label[:FLAGS.num_eval]) # tf.logging.info('Evaluation of valid set (%d examples) took %.3f secs'%( # FLAGS.num_eval, time.time() - start_time)) start_time = time.time() tf.logging.info('Test') acc_test, mse_test, var_test, norm_test, _ = do_eval( sess, model, test_image[:FLAGS.num_eval], test_label[:FLAGS.num_eval], save_pred=False) tf.logging.info('Evaluation of test set (%d examples) took %.3f secs' % (FLAGS.num_eval, time.time() - start_time)) metrics = { 'train_acc': float(acc_train), 'train_mse': float(mse_train), 'train_norm': float(norm_train), # 'valid_acc': float(acc_valid), # 'valid_mse': float(mse_valid), # 'valid_norm': float(norm_valid), 'test_acc': float(acc_test), 'test_mse': float(mse_test), 'test_norm': float(norm_test), 'stability_eps': float(final_eps), } record_results = [ # FLAGS.num_train, hparams.nonlinearity, hparams.weight_var, # hparams.bias_var, hparams.mu_2, hparams.depth, acc_train, acc_valid, acc_test, # mse_train, mse_valid, mse_test, final_eps FLAGS.num_train, hparams.nonlinearity, hparams.weight_var, hparams.bias_var, hparams.mu_2, hparams.depth, acc_train, acc_test, var_test, norm_train ] if nngp_kernel.use_fixed_point_norm: metrics['var_fixed_point'] = float(nngp_kernel.var_fixed_point_np[0]) record_results.append(nngp_kernel.var_fixed_point_np[0]) # Store data result_file = os.path.join(run_dir, 'results' + str(hparams.depth) + '.csv') with tf.gfile.Open(result_file, 'a') as f: filewriter = csv.writer(f) filewriter.writerow(record_results) with tf.Session() as sess: varss = np.array( [x[0] for x in sess.run(nngp_kernel.layer_qaa_dict).values()]) save_string = str(hparams.depth) + "_" + str( hparams.weight_var) + '_' + str(hparams.mu_2) np.save('results/vars/' + save_string, varss) return metrics
def run_nngp_eval(hparams, run_dir): """Runs experiments.""" # Write hparams to experiment directory. tf.gfile.MakeDirs(run_dir) with tf.gfile.GFile(run_dir + "/hparams", mode="w") as f: f.write(hparams.to_proto().SerializeToString()) tf.logging.info("Starting job.") tf.logging.info("Hyperparameters") tf.logging.info("---------------------") tf.logging.info(hparams) tf.logging.info("---------------------") tf.logging.info("Loading data") # Get the sets of images and labels for training, validation, and test on dataset. if FLAGS.dataset == "mnist": ( train_image, train_label, valid_image, valid_label, test_image, test_label, ) = load_dataset.load_mnist(num_train=FLAGS.num_train, mean_subtraction=True, random_roated_labels=False) else: raise NotImplementedError tf.logging.info("Building Model") if hparams.nonlinearity == "tanh": nonlin_fn = tf.tanh elif hparams.nonlinearity == "relu": nonlin_fn = tf.nn.relu else: raise NotImplementedError with tf.Session() as sess: # Construct NNGP kernel nngp_kernel = nngp.NNGPKernel( depth=hparams.depth, weight_var=hparams.weight_var, bias_var=hparams.bias_var, nonlin_fn=nonlin_fn, grid_path=FLAGS.grid_path, n_gauss=FLAGS.n_gauss, n_var=FLAGS.n_var, n_corr=FLAGS.n_corr, max_gauss=FLAGS.max_gauss, max_var=FLAGS.max_var, use_fixed_point_norm=FLAGS.use_fixed_point_norm, ) # Construct Gaussian Process Regression model model = gpr.GaussianProcessRegression(train_image, train_label, kern=nngp_kernel) # 1.Training start_time = time.time() tf.logging.info("Training") # For large number of training points, we do not evaluate on full set to # save on training evaluation time. if FLAGS.num_train <= 5000: acc_train, mse_train, norm_train, final_eps = do_eval( sess, model, train_image[:FLAGS.num_eval], train_label[:FLAGS.num_eval], ) tf.logging.info( "Evaluation of training set (%d examples) took %.3f secs" % (min(FLAGS.num_train, FLAGS.num_eval), time.time() - start_time)) else: acc_train, mse_train, norm_train, final_eps = do_eval( sess, model, train_image[:1000], train_label[:1000]) tf.logging.info( "Evaluation of training set (%d examples) took %.3f secs" % (1000, time.time() - start_time)) # 2.Validation start_time = time.time() tf.logging.info("Validation") acc_valid, mse_valid, norm_valid, _ = do_eval( sess, model, valid_image[:FLAGS.num_eval], valid_label[:FLAGS.num_eval]) tf.logging.info( "Evaluation of valid set (%d examples) took %.3f secs" % (FLAGS.num_eval, time.time() - start_time)) # 3.Test start_time = time.time() tf.logging.info("Test") acc_test, mse_test, norm_test, _ = do_eval( sess, model, test_image[:FLAGS.num_eval], test_label[:FLAGS.num_eval], save_pred=False, ) tf.logging.info("Evaluation of test set (%d examples) took %.3f secs" % (FLAGS.num_eval, time.time() - start_time)) metrics = { "train_acc": float(acc_train), "train_mse": float(mse_train), "train_norm": float(norm_train), "valid_acc": float(acc_valid), "valid_mse": float(mse_valid), "valid_norm": float(norm_valid), "test_acc": float(acc_test), "test_mse": float(mse_test), "test_norm": float(norm_test), "stability_eps": float(final_eps), } record_results = [ FLAGS.num_train, hparams.nonlinearity, hparams.weight_var, hparams.bias_var, hparams.depth, acc_train, acc_valid, acc_test, mse_train, mse_valid, mse_test, final_eps, ] if nngp_kernel.use_fixed_point_norm: metrics["var_fixed_point"] = float(nngp_kernel.var_fixed_point_np[0]) record_results.append(nngp_kernel.var_fixed_point_np[0]) # Store data result_file = os.path.join(run_dir, "results.csv") with tf.gfile.Open(result_file, "a") as f: filewriter = csv.writer(f) filewriter.writerow(record_results) return metrics
def run_nngp_eval(hparams, run_dir): """Runs experiments.""" tf.gfile.MakeDirs(run_dir) # Write hparams to experiment directory. with tf.gfile.GFile(run_dir + '/hparams', mode='w') as f: f.write(hparams.to_proto().SerializeToString()) tf.logging.info('Starting job.') tf.logging.info('Hyperparameters') tf.logging.info('---------------------') tf.logging.info(hparams) tf.logging.info('---------------------') tf.logging.info('Loading data') # Get the sets of images and labels for training, validation, and # # test on dataset. if FLAGS.dataset == 'mnist': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_mnist(num_train=FLAGS.num_train, mean_subtraction=True, random_roated_labels=False) elif FLAGS.dataset == 'qi': train_image, train_label, test_image, test_label, y_mu, y_std, train_label_normal = load_data( ) else: raise NotImplementedError tf.logging.info('train X shape: %s' % (str(train_image.shape))) tf.logging.info('train y shape: %s' % (str(train_label.shape))) tf.logging.info('test X shape: %s' % (str(test_image.shape))) tf.logging.info('test y shape: %s' % (str(test_label.shape))) #return train_image, train_label, valid_image, valid_label, test_image,test_label, mu_y,std_y tf.logging.info('Building Model') if hparams.nonlinearity == 'tanh': nonlin_fn = tf.tanh elif hparams.nonlinearity == 'relu': nonlin_fn = tf.nn.relu else: raise NotImplementedError with tf.Session() as sess: # Construct NNGP kernel nngp_kernel = nngp.NNGPKernel( depth=hparams.depth, weight_var=hparams.weight_var, bias_var=hparams.bias_var, nonlin_fn=nonlin_fn, grid_path=FLAGS.grid_path, n_gauss=FLAGS.n_gauss, n_var=FLAGS.n_var, n_corr=FLAGS.n_corr, max_gauss=FLAGS.max_gauss, max_var=FLAGS.max_var, use_fixed_point_norm=FLAGS.use_fixed_point_norm) # Construct Gaussian Process Regression model model = gpr.GaussianProcessRegression(train_image, train_label_normal, kern=nngp_kernel) if True: start_time = time.time() tf.logging.info('Training') rmse_train = do_eval_qi(sess, model, train_image, train_label, y_mu, y_std) tf.logging.info('Evaluation of training set (%d examples) took ' '%.3f secs' % ((train_image.shape[0]), time.time() - start_time)) start_time = time.time() tf.logging.info('Test') rmse_test = do_eval_qi(sess, model, test_image, test_label, y_mu, y_std, save_pred=False) tf.logging.info('Evaluation of test set (%d examples) took %.3f secs' % (test_image.shape[0], time.time() - start_time)) ## For large number of training points, we do not evaluate on full set to ## save on training evaluation time. #if FLAGS.num_train <= 5000: # acc_train, mse_train, norm_train, final_eps = do_eval( # sess, model, train_image[:FLAGS.num_eval], # train_label[:FLAGS.num_eval]) # tf.logging.info('Evaluation of training set (%d examples) took ' # '%.3f secs'%( # min(FLAGS.num_train, FLAGS.num_eval), # time.time() - start_time)) #else: # acc_train, mse_train, norm_train, final_eps = do_eval( # sess, model, train_image[:1000], train_label[:1000]) # tf.logging.info('Evaluation of training set (%d examples) took ' # '%.3f secs'%(1000, time.time() - start_time)) #start_time = time.time() #tf.logging.info('Validation') #acc_valid, mse_valid, norm_valid, _ = do_eval( # sess, model, valid_image[:FLAGS.num_eval], # valid_label[:FLAGS.num_eval]) #tf.logging.info('Evaluation of valid set (%d examples) took %.3f secs'%( # FLAGS.num_eval, time.time() - start_time)) #start_time = time.time() #tf.logging.info('Test') #acc_test, mse_test, norm_test, _ = do_eval( # sess, # model, # test_image[:FLAGS.num_eval], # test_label[:FLAGS.num_eval], # save_pred=False) #tf.logging.info('Evaluation of test set (%d examples) took %.3f secs'%( # FLAGS.num_eval, time.time() - start_time)) metrics = { 'train_rmse': float(rmse_train), 'test_rmse': float(rmse_test), } record_results = [ [ "FLAGS.train_test_split", "hparams.nonlinearity", "hparams.weight_var", "hparams.bias_var", "hparams.depth", "rmse_train", "rmse_test" ], [ FLAGS.train_test_split, hparams.nonlinearity, hparams.weight_var, hparams.bias_var, hparams.depth, rmse_train, rmse_test ], ] if nngp_kernel.use_fixed_point_norm: metrics['var_fixed_point'] = float(nngp_kernel.var_fixed_point_np[0]) record_results[0].append("nngp_kernel.var_fixed_point_np") record_results[1].append(nngp_kernel.var_fixed_point_np[0]) # Store data result_file = os.path.join(run_dir, 'results.csv') with tf.gfile.Open(result_file, 'a') as f: filewriter = csv.writer(f) filewriter.writerow(record_results) return metrics
def run_nngp_eval(args): """Runs experiments.""" run_dir = args.experiment_dir os.makedirs(run_dir, exist_ok=True) hparams = { 'nonlinearity': args.nonlinearity, 'weight_var': args.weight_var, 'bias_var': args.bias_var, 'depth': args.depth } # Write hparams to experiment directory. with open(run_dir + '/hparams.txt', mode='w') as f: f.write(json.dumps(hparams)) logging.info('Starting job.') logging.info('Hyperparameters') logging.info('---------------------') logging.info(hparams) logging.info('---------------------') logging.info('Loading data') # Get the sets of images and labels for training, validation, and # # test on dataset. if args.dataset == 'mnist': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_mnist(args, num_train=args.num_train, mean_subtraction=True, random_roated_labels=False) else: raise NotImplementedError logging.info('Building Model') if hparams['nonlinearity'] == 'tanh': nonlin_fn = lambda x: np.tanh(x) elif hparams['nonlinearity'] == 'relu': def relu(x): return x * (x > 0) nonlin_fn = relu else: raise NotImplementedError # Construct NNGP kernel nngp_kernel = nngp.NNGPKernel(depth=hparams['depth'], weight_var=hparams['weight_var'], bias_var=hparams['bias_var'], nonlin_fn=nonlin_fn, grid_path=args.grid_path, n_gauss=args.n_gauss, n_var=args.n_var, n_corr=args.n_corr, max_gauss=args.max_gauss, max_var=args.max_var, use_precomputed_grid=True) # Construct Gaussian Process Regression model model = gpr.GaussianProcessRegression(train_image, train_label, kern=nngp_kernel) start_time = time.time() logging.info('Training') # For large number of training points, we do not evaluate on full set to # save on training evaluation time. train_size = args.num_eval if args.num_train <= 5000 else 1000 acc_train, mse_train, norm_train, final_eps = do_eval( args, model, train_image[:train_size], train_label[:train_size]) logging.info('Evaluation of training set ({0} examples) took ' '{1:.3f} secs'.format(min(args.num_train, args.num_eval), time.time() - start_time)) start_time = time.time() logging.info('Validation') acc_valid, mse_valid, norm_valid, _ = do_eval(args, model, valid_image[:args.num_eval], valid_label[:args.num_eval]) logging.info( 'Evaluation of valid set ({0} examples) took {1:.3f} secs'.format( args.num_eval, time.time() - start_time)) start_time = time.time() logging.info('Test') acc_test, mse_test, norm_test, _ = do_eval(args, model, test_image[:args.num_eval], test_label[:args.num_eval]) logging.info( 'Evaluation of valid set ({0} examples) took {1:.3f} secs'.format( args.num_eval, time.time() - start_time)) metrics = { 'train_acc': float(acc_train), 'train_mse': float(mse_train), 'train_norm': float(norm_train), 'valid_acc': float(acc_valid), 'valid_mse': float(mse_valid), 'valid_norm': float(norm_valid), 'test_acc': float(acc_test), 'test_mse': float(mse_test), 'test_norm': float(norm_test), 'stability_eps': float(final_eps), } record_results = [ args.num_train, hparams['nonlinearity'], hparams['weight_var'], hparams['bias_var'], hparams['depth'], acc_train, acc_valid, acc_test, mse_train, mse_valid, mse_test, final_eps ] # Store data result_file = os.path.join(run_dir, 'results.csv') with open(result_file, 'a') as f: f.write(json.dumps(record_results)) return metrics
def run_nngp_eval(hparams, run_dir): """Runs experiments.""" tf.gfile.MakeDirs(run_dir) # Write hparams to experiment directory. with tf.gfile.GFile(run_dir + '/hparams', mode='w') as f: f.write(hparams.to_proto().SerializeToString()) tf.logging.info('Starting job.') tf.logging.info('Hyperparameters') tf.logging.info('---------------------') tf.logging.info(hparams) tf.logging.info('---------------------') tf.logging.info('Loading data') # Get the sets of images and labels for training, validation, and # # test on dataset. if FLAGS.dataset == 'mnist': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_mnist(num_train=FLAGS.num_train, mean_subtraction=True, random_roated_labels=False) elif FLAGS.dataset == 'cifar': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_cifar10(num_train=FLAGS.num_train, mean_subtraction=True) elif FLAGS.dataset == 'stl10': (train_image, train_label, valid_image, valid_label, test_image, test_label) = load_dataset.load_stl10(num_train=FLAGS.num_train, mean_subtraction=True) else: raise NotImplementedError tf.logging.info('Building Model') if hparams.nonlinearity == 'tanh': nonlin_fn = tf.tanh elif hparams.nonlinearity == 'relu': nonlin_fn = tf.nn.relu else: raise NotImplementedError session_conf = tf.ConfigProto(intra_op_parallelism_threads=12, inter_op_parallelism_threads=1) with tf.Session(config=session_conf) as sess: # Construct NNGP kernel nngp_kernel = nngp.NNGPKernel( depth=hparams.depth, weight_var=hparams.weight_var, bias_var=hparams.bias_var, nonlin_fn=nonlin_fn, grid_path=FLAGS.grid_path, n_gauss=FLAGS.n_gauss, n_var=FLAGS.n_var, n_corr=FLAGS.n_corr, max_gauss=FLAGS.max_gauss, max_var=FLAGS.max_var, use_fixed_point_norm=FLAGS.use_fixed_point_norm) # Construct Gaussian Process Regression model model = gpr.GaussianProcessRegression(train_image, train_label, kern=nngp_kernel) start_time = time.time() tf.logging.info('Training') # For large number of training points, we do not evaluate on full set to # save on training evaluation time. if FLAGS.num_train <= 5000: acc_train, mse_train, norm_train, final_eps = do_eval( sess, model, train_image[:FLAGS.num_eval], train_label[:FLAGS.num_eval]) tf.logging.info('Evaluation of training set (%d examples) took ' '%.3f secs' % (min(FLAGS.num_train, FLAGS.num_eval), time.time() - start_time)) else: acc_train, mse_train, norm_train, final_eps = do_eval( sess, model, train_image[:1000], train_label[:1000]) tf.logging.info('Evaluation of training set (%d examples) took ' '%.3f secs' % (1000, time.time() - start_time)) vfile = "validation_{0}_{1}_{2}_{3}_{4}_{5}.npy".format( FLAGS.dataset, FLAGS.num_train, FLAGS.num_eval, hparams.depth, hparams.weight_var, hparams.bias_var) start_time = time.time() tf.logging.info('Validation') acc_valid, mse_valid, norm_valid, _ = do_eval( sess, model, valid_image[:FLAGS.num_eval], valid_label[:FLAGS.num_eval], save_pred=True, fname=vfile) tf.logging.info( 'Evaluation of valid set (%d examples) took %.3f secs' % (FLAGS.num_eval, time.time() - start_time)) tfile = "test_{0}_{1}_{2}_{3}_{4}_{5}.npy".format( FLAGS.dataset, FLAGS.num_train, FLAGS.num_eval, hparams.depth, hparams.weight_var, hparams.bias_var) start_time = time.time() tf.logging.info('Test') acc_test, mse_test, norm_test, _ = do_eval(sess, model, test_image[:FLAGS.num_eval], test_label[:FLAGS.num_eval], save_pred=True, fname=tfile) tf.logging.info('Evaluation of test set (%d examples) took %.3f secs' % (FLAGS.num_eval, time.time() - start_time)) metrics = { 'train_acc': float(acc_train), 'train_mse': float(mse_train), 'train_norm': float(norm_train), 'valid_acc': float(acc_valid), 'valid_mse': float(mse_valid), 'valid_norm': float(norm_valid), 'test_acc': float(acc_test), 'test_mse': float(mse_test), 'test_norm': float(norm_test), 'stability_eps': float(final_eps), } record_results = [ FLAGS.num_train, hparams.nonlinearity, hparams.weight_var, hparams.bias_var, hparams.depth, acc_train, acc_valid, acc_test, mse_train, mse_valid, mse_test, final_eps ] if nngp_kernel.use_fixed_point_norm: metrics['var_fixed_point'] = float(nngp_kernel.var_fixed_point_np[0]) record_results.append(nngp_kernel.var_fixed_point_np[0]) # Store data rfile = "results_{0}_{1}_{2}_{3}_{4}_{5}.csv".format(FLAGS.dataset, \ FLAGS.num_train, \ FLAGS.num_eval, \ hparams.depth, \ hparams.weight_var, \ hparams.bias_var) result_file = os.path.join(run_dir, rfile) with tf.gfile.Open(result_file, 'a') as f: filewriter = csv.writer(f) filewriter.writerow(record_results) return metrics