# initialize variables data = None tracer = None cls_pred = None cls_true = None directory = None #---------------------------------------- # Loading section # load argv if len(argv) != 3: print("Error!\nUsage: test_tracer.py [directory] [keyword]") exit() directory = argv[1] keyword = argv[2] # load tracer failure, data, tracer = load_lib.load_arrangement(keyword, directory) if not failure: print("load data and tracer success") # load cls_pred failure, cls_pred = load_lib.load_cls_pred(keyword, directory) if not failure: print("load cls_pred success") # load cls_true failure, cls_true = load_lib.load_cls_true(keyword, directory) if not failure: print("load cls_true success") failure, coords = load_lib.load_coords(keyword, directory) if not failure: print("load coords success") #---------------------------------------- # test if the loading is successful or not
print( "Error!\nUsage: plot_sed.py [main_name] [ no-observation value ] [true label] [pred label]" ) print("Example: plot_loss_freq.py MaxLoss15 '0.0' 1 2") exit() main_name = argv[1] no_obs = float(argv[2]) true_label = int(argv[3]) pred_label = int(argv[4]) #---------------------------------------- data_list = glob("AI*test_on*") for directory in data_list: print("#################################") print("start to loading data saved in {0}".format(directory)) # load tracer failure, data, tracer = load_lib.load_arrangement(main_name, directory) if not failure: print("load data and tracer success") # load cls_pred failure, cls_pred = load_lib.load_cls_pred(main_name, directory) if not failure: print("load cls_pred success") # load cls_true failure, cls_true = load_lib.load_cls_true(main_name, directory) if not failure: print("load cls_true success") # confusion matrix print("### confusion matrix ###") failure, cm = load_lib.confusion_matrix(cls_true, cls_pred) if not failure: print("confusion matrix success")