import matplotlib.patches as patches font = {'family': 'Arial', 'weight': 'normal', 'size': 15} matplotlib.rc('font', **font) scanfolder = '/Users/alec/UCSB/scan_data/' savefolder = '/Users/alec/UCSB/scan_data/images/noaxes/' scan_num = 135 scan_num = str(scan_num) datapath = scanfolder + scan_num + '/' + scan_num.zfill(6) + '.scan' infopath = scanfolder + scan_num + '/' + scan_num.zfill(6) + '.info' savepath = savefolder + scan_num + '.pdf' scandata = ls.load_contour(datapath) scan_size = ls.get_scan_size(infopath) scandata = scandata / (1e3) plt.close('all') fp = plt.figure(1, [4, 4]) ax1 = plt.axes() plt.imshow( scandata, cmap='bone', interpolation='nearest', extent=[-scan_size / 2, scan_size / 2, -scan_size / 2, scan_size / 2], clim=[44, 62]) cbar = plt.colorbar(fraction=0.045, pad=0.06)
@author: alec """ import matplotlib import matplotlib.pyplot as plt import matplotlib.pylab as pylab import matplotlib.patches as patches import numpy as np import load_scan as ls import fourier_image as fi font = {'family': 'Arial', 'weight': 'normal', 'size': 14} matplotlib.rc('font', **font) scandata = ls.load_contour('/Users/alec/UCSB/scan_data/809/000809.scan') scan_size = ls.get_scan_size('/Users/alec/UCSB/scan_data/809/000809.info') res = len(scandata[0]) fscandata = fi.fourier_image(scandata) fscan_size = res / scan_size plt.close('all') plt.figure(1, [5, 5]) ax1 = plt.axes() plt.imshow( np.abs(fscandata), cmap='bone', interpolation='nearest',