def _testing_original_file(self, test_dir, type_data): dnn_predict_dir = '/home/danglab/3P/B/' + self.hidden_layer +'SQR/' + self.artic + type_data + 'full_EMA/' + 'test_' + str(self.test_number) + '/' if not os.path.exists(dnn_predict_dir): os.makedirs(dnn_predict_dir) for afile in self.missing_filename_list: test_arr, factors = read_file_test(test_dir + afile + '_in.txt', self.n_input_f, "factors") #read a missing_feature energy = test_arr[:,0] #ko cho energy vao DNN test_arr = test_arr[:,1:self.n_input_f] #test_arr[:,36:test_arr.shape[1]] = 0 # loai bo EMA data #print test_arr #break self._write_predict_2_file(dnn_predict_dir + afile + '.txt', energy, self.predict(test_arr), factors) # write result to file
def _testing_noise_space(self, test_dir, type_data): for type_test in sorted(os.listdir(test_dir)): if (not type_test.endswith('zip')) and 'output' not in type_test: type_test_dir = test_dir + type_test + '/' print type_test_dir dnn_predict_dir = '/home/danglab/3P/B/' + self.hidden_layer +'SQR/' + self.artic + type_data + 'test_' + str(self.test_number) + '/' + type_test + '/' if not os.path.exists(dnn_predict_dir): os.makedirs(dnn_predict_dir) print type_test duration = type_test.split('_')[1] # 50ms, 100ms #listtest = sorted(os.listdir(type_test_dir)) #for afile in listtest: for prefix_file in self.missing_filename_list: afile = prefix_file + '_' + duration + '_in.txt' test_arr, factors = read_file_test(type_test_dir + afile, self.n_input_f, "factors") #read a missing_feature find_ = [m.start() for m in re.finditer('_', afile)] energy = test_arr[:,0] #ko cho energy vao DNN test_arr = test_arr[:,1:self.n_input_f] #print factors self._write_predict_2_file(dnn_predict_dir + afile.replace(afile[find_[4]:len(afile)-4],''), energy, self.predict(test_arr), factors) # write result to file