Пример #1
0
def test_knn_graph_sparse():
    k = 3
    n_pca = 20
    pca = TruncatedSVD(n_pca, random_state=42).fit(data)
    data_nu = pca.transform(data)
    pdx = squareform(pdist(data_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    K = np.empty_like(pdx)
    for i in range(len(pdx)):
        K[i, pdx[i, :] <= epsilon[i]] = 1
        K[i, pdx[i, :] > epsilon[i]] = 0

    K = K + K.T
    W = np.divide(K, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        sp.coo_matrix(data),
        n_pca=n_pca,
        decay=None,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_allclose(G2.W.toarray(), G.W.toarray())
    assert isinstance(G2, graphtools.graphs.kNNGraph)
Пример #2
0
def test_knn_graph_multiplication_symm():
    k = 3
    n_pca = 20
    pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data)
    data_nu = pca.transform(data)
    pdx = squareform(pdist(data_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    K = np.empty_like(pdx)
    for i in range(len(pdx)):
        K[i, pdx[i, :] <= epsilon[i]] = 1
        K[i, pdx[i, :] > epsilon[i]] = 0

    W = K * K.T
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        data,
        n_pca=n_pca,
        decay=None,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
        kernel_symm="*",
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W - G2.W).nnz == 0
    assert (G2.W - G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.kNNGraph)
Пример #3
0
def test_knn_graph():
    k = 3
    n_pca = 20
    pca = PCA(n_pca, svd_solver='randomized', random_state=42).fit(data)
    data_nu = pca.transform(data)
    pdx = squareform(pdist(data_nu, metric='euclidean'))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    K = np.empty_like(pdx)
    for i in range(len(pdx)):
        K[i, pdx[i, :] <= epsilon[i]] = 1
        K[i, pdx[i, :] > epsilon[i]] = 0

    K = K + K.T
    W = np.divide(K, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(data, n_pca=n_pca,
                     decay=None, knn=k, random_state=42,
                     use_pygsp=True)
    assert(G.N == G2.N)
    assert(np.all(G.d == G2.d))
    assert((G.W != G2.W).nnz == 0)
    assert((G2.W != G.W).sum() == 0)
    assert(isinstance(G2, graphtools.graphs.kNNGraph))
Пример #4
0
def test_knn_graph():
    k = 3
    n_pca = 20
    pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data)
    data_nu = pca.transform(data)
    pdx = squareform(pdist(data_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    K = np.empty_like(pdx)
    for i in range(len(pdx)):
        K[i, pdx[i, :] <= epsilon[i]] = 1
        K[i, pdx[i, :] > epsilon[i]] = 0

    K = K + K.T
    W = np.divide(K, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(data,
                     n_pca=n_pca,
                     decay=None,
                     knn=k - 1,
                     random_state=42,
                     use_pygsp=True)
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W - G2.W).nnz == 0
    assert (G2.W - G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.kNNGraph)

    K2 = G2.build_kernel_to_data(G2.data_nu, knn=k)
    K2 = (K2 + K2.T) / 2
    assert (G2.K - K2).nnz == 0
    assert (G2.build_kernel_to_data(
        G2.data_nu, knn=data.shape[0]).nnz == data.shape[0] * data.shape[0])
    with assert_warns_message(
            UserWarning,
            "Cannot set knn ({}) to be greater than "
            "n_samples ({}). Setting knn={}".format(data.shape[0] + 1,
                                                    data.shape[0],
                                                    data.shape[0]),
    ):
        G2.build_kernel_to_data(
            Y=G2.data_nu,
            knn=data.shape[0] + 1,
        )