Пример #1
0
    def __load(self, index):
        if self.patches_from_current_image > self.patches_from_single_image:
            self.patches_from_current_image = 0
            self.current_image_index = index

            p, f = self.series[index]
            self.image, self.label, affine = loader_helper.read_multimodal(p, f, self.annotation_path, True)


            mask = self.image > 0
            num_voxels = np.sum(mask,axis=(1,2,3))

            #print(self.image[mask].shape)

            mean = np.sum(self.image / num_voxels[:,None,None,None], axis=(1,2,3))
            mean2 = np.sum(np.square(self.image) / num_voxels[:,None,None,None], axis=(1,2,3))

            std = np.sqrt(mean2 - mean * mean)

            #std1 = self.image.std(axis=(1,2,3))

            self.image = (self.image - mean.reshape((self.image.shape[0],1,1,1))) / std.reshape((self.image.shape[0],1,1,1))#self.image.std(axis=(1,2,3), keepdims=True)#(self.image - self.image.mean(axis=(1,2,3), keepdims=True)) / self.image.std(axis=(1,2,3), keepdims=True)
            #self.image[~mask] = -10

        self.patches_from_current_image += 1
Пример #2
0
    def __getitem__(self, index):

        image, label, affine = loader_helper.read_multimodal(data_path=self.path, series=self.series[index], read_annotation=True)

        #image = image - image.mean()
        #image = image / image.var() ** 0.5

        #image = image / 1000.

        old_shape = image.shape
        new_shape = tuple([loader_helper.closest_to_k(i,16) for i in old_shape[1:]])
        new_image = np.full(shape=(old_shape[0],)+new_shape, fill_value=0., dtype=np.float32)
        new_label = np.zeros(shape=new_shape, dtype=np.float32)

        new_image[:,:old_shape[1],:old_shape[2],:old_shape[3]] = image
        new_label[:old_shape[1],:old_shape[2],:old_shape[3]] = label

        mask = new_image > 0
        num_voxels = np.sum(mask, axis=(1, 2, 3))

        mean = np.sum(new_image / num_voxels[:,None,None,None], axis=(1, 2, 3))
        mean2 = np.sum(np.square(new_image)/ num_voxels[:,None,None,None], axis=(1, 2, 3))

        std = np.sqrt(mean2 - mean * mean)

        new_image = (new_image - mean.reshape((new_image.shape[0],1,1,1)))/ std.reshape((new_image.shape[0], 1, 1, 1))
        #new_image[~mask] = -10
        #new_image = new_image / new_image.std(axis=(1, 2, 3),keepdims=True) #(new_image - new_image.mean(axis=(1, 2, 3), keepdims=True)) / new_image.std(axis=(1, 2, 3),keepdims=True)

        new_label_out = (np.eye(4)[new_label.astype(np.int32)]).transpose((3,0,1,2))

        #new_label_out = (new_label > 0)[None]


        wt = np.sum(new_label_out [1:], axis=0, keepdims=True)
        tc = np.sum(new_label_out [[1,3]], axis=0, keepdims=True)
        et = new_label_out[3,None]

        new_label_out  = np.concatenate([wt,tc,et],axis=0)

        labels_torch = torch.from_numpy(new_label_out.copy()).float()

        return [torch.from_numpy(new_image).float(),
                ], \
                [  labels_torch,
                   ]
Пример #3
0
    def __cache(self):
        # cache locations of the labels (bounding boxes) inside the images
        print('Cache files')
        for p, f in tqdm.tqdm(self.series):

            image, label, affine = loader_helper.read_multimodal(p, f, self.annotation_path, True)


            bbox = loader_helper.bbox3(label>0)


            borders = np.array(label.shape)
            borders_low = np.array(self.patch_size) / 2.0 + 1
            borders_high = borders - np.array(self.patch_size) / 2.0 - 1

            bbox[0] = np.maximum(bbox[0]-50, borders_low)
            bbox[1] = np.minimum(bbox[1]+50, borders_high)

            self.labels_location.append(bbox)
Пример #4
0
    path_input = opt.data_path
    path_output = opt.predictions_path

    series = [f for f in os.listdir(path_input) if os.path.isdir(os.path.join(path_input, f))]
    series.sort()

    #series = series_val19

    dice = metrics.Dice(input_index=0)
    dicewt = metrics.DiceWT(input_index=0)

    sum = 0

    for f in series:

        image, label, affine = loader_helper.read_multimodal(path_input, f, True)

        predict = loader_helper.read_nii(os.path.join(path_output,f+'.nii.gz')).astype(np.uint8)
        predict[predict==4] = 3


        result = np.zeros(shape=(4))

        for i in range(1, 4):
            p = (predict== i).astype(np.float32)
            g = (label == i).astype(np.float32)

            numerator = (p * g).sum()
            denominator = (p + g).sum()

            r = 2 * numerator / denominator
Пример #5
0
                            models_root=opt.models_path,
                            rewrite=False,
                            connect_tb=False)
    trainer.load_best()
    trainer.state.cuda = True

    series = [
        f for f in os.listdir(path) if os.path.isdir(os.path.join(path, f))
    ]
    series.sort()

    print(series)

    for f in series:

        image, label, affine = loader_helper.read_multimodal(
            data_path=path, series=f, read_annotation=False)

        bbox = get_bbox(image)

        image_crop = image[:, bbox[0, 0]:bbox[1, 0], bbox[0, 1]:bbox[1, 1],
                           bbox[0, 2]:bbox[1, 2]]

        #data_crop = median_filter(data_crop, 3)
        #=========================================
        old_shape_crop = image_crop.shape[1:]
        new_shape_crop = tuple(
            [loader_helper.closest_to_k(i, 16) for i in old_shape_crop])
        diff = np.array(new_shape_crop) - np.array(old_shape_crop)
        pad_left = diff // 2
        pad_right = diff - pad_left