def run(self): # Run forever until event_stop tells us to stop while not self.data_collection.event_stop.is_set(): # Initialize the websocket WebSocketBaseClient.__init__(self, self.url, *self.init_args, **self.init_kwargs) self.sock.settimeout( self.TIMEOUT ) # Set the socket timeout so if a host is unreachable it doesn't take 60s (default) to figure out logger.notice("Connecting to '{}'...".format(self.url)) try: self.connect() # Attempt to connect to the Arduino except Exception as e: logger.error( "Unable to connect to '{}' (probably timed out). Reason: {}" .format(self.url, e)) else: # If we were able to connect, then run the websocket (received_message will get called appropriately) while self.once(): pass # self.once() will return False on error/close -> Only stop when the connection is lost or self.close() is called self.terminate() time.sleep( 2 ) # Wait for a couple of seconds for Arduino to reboot/connect or just to avoid network overload logger.success("Thread in charge of '{}' exited :)".format(self.url))
def install_plugins(ARDUINO_DIR): logger.notice("Installing the SPIFFS (filesystem) plugin...") call(["./make.sh"], env=dict(os.environ, INSTALLDIR=ARDUINO_DIR), cwd="arduino-submodules/plugins/esp32fs") logger.notice( "Hopefully everything went right [check the output above] ;)")
def download_hardware_tools(): # Download esp32 tools (not part of the repo so `git submodule update` won't fetch them) logger.notice( "Downloading additional esp32 tools not included in the repo...") try: esp_tools_folder = os.path.join(ESP_BOARD_FOLDER, "tools") cur_dir = os.path.abspath( os.curdir ) # Save a copy of the current dir so we can return after the script is run os.chdir(esp_tools_folder) # Enter the directory sys.path.insert( 0, esp_tools_folder) # Add it to the PATH so get.py can be imported import get as esp_get # Import the script as a module ## TEMPORARY HACK (hopefully they create a main() function so we don't have to manually copy the contents of the __main__ block) # Perform the same steps as the "if __name__ == '__main__':" block esp_get.mkdir_p(esp_get.dist_dir) tools_to_download = esp_get.load_tools_list( "../package/package_esp32_index.template.json", esp_get.identify_platform()) for tool in tools_to_download: esp_get.get_tool(tool) # Finally, remember to return to the original folder (so the rest of our script works) os.chdir(cur_dir) except Exception as e: logger.critical("ERROR downloading esp32 tools. Reason: {}".format(e)) return False logger.success("Additional esp32 tools downloaded :)") return True
def create_symlinks(ARDUINO_DIR, subdir): ACTUAL_DIR = os.path.join(ARDUINO_DIR, subdir) # Make it generic so we can symlink Arduino/libraries as well as Arduino/hardware # Create directory if it doesn't exist if not os.path.isdir(ACTUAL_DIR): logger.debug("Arduino '{}' directory does not exist - Creating".format(subdir)) os.makedirs(ACTUAL_DIR) # Update all libraries (using git submodule) logger.notice("Making sure you have the latest version of each submodule/library...") call(["git", "submodule", "init"]) call(["git", "submodule", "update"]) logger.success("All submodules updated :)") # Create symbolic links src_paths, dst_paths = get_src_and_dst_paths(ARDUINO_DIR, subdir) for src, dst in zip(src_paths, dst_paths): if os.path.exists(dst): # If dst library folder already exists, decide between: if not os.path.islink(dst): # If the folder is not a symlink and already existed, leave it as is logger.warning("{} exists and is not a symbolic link - not overwriting".format(dst)) continue else: # If it was a symlink, just "refresh" (update) it logger.verbose("Unlinking {} first".format(dst)) os.unlink(dst) # Create symbolic link logger.debug("Creating new symbolic link {}".format(dst)) os.symlink(src, dst) logger.success("Done! :)") return True
def stop(self): logger.notice("Stopping data collection!") self.event_stop.set() # Let the threads know they need to exit # First, close the websockets for ws in self.ws_threads: Thread(target=ws.close).start() # ws.close is blocking so just call it from a new thread (as long as we're not collecting data from too many nodes, we shouldn't hit the max thread limit) # And wait for all threads to finish for ws in self.ws_threads: ws.join()
def record_cam(cam, out_folder='data', t_start=None, save_as_video=True): if t_start is None: t_start = datetime.now() # Initialize t_start to current time if t_start wasn't specified if isinstance(t_start, datetime): t_start = str(t_start)[:-7].replace(':', '-') # Convert to str out_folder = os.path.join(out_folder, t_start) os.makedirs(out_folder, exist_ok=True) # Ensure folder exists # Open the camera video_capture = cv2.VideoCapture(cam) fps = video_capture.get(cv2.CAP_PROP_FPS) ret, frame = video_capture.read() # Read a frame, sometimes first read() returns an "invalid" image if not ret: logger.critical("Oops, can't access cam {}, exiting! :(".format(cam)) return frame_dimensions = frame.shape[1::-1] # width, height # Create a video file if save_as_video if save_as_video: video_filename = os.path.join(out_folder, "cam_{}_{}.mp4".format(cam, t_start)) video_writer = cv2.VideoWriter(video_filename, cv2.VideoWriter_fourcc(*'avc1'), fps if fps > 0 else 25, frame_dimensions) # Note: avc1 is Apple's version of the MPEG4 part 10/H.264 standard apparently logger.notice("Starting cam '{}' recording! Saving {}".format(cam, "as {}".format(video_filename) if save_as_video else "at {}".format(out_folder))) t_frames = [] try: while True: ret, frame = video_capture.read() t_frames.append(datetime.now()) if len(t_frames) > 1: logger.debug("Wrote frame {} with delta={:.3f}ms (saving took {:.3f}ms)".format(len(t_frames), 1000*(t_frames[-1]-t_frames[-2]).total_seconds(), 1000*(t_save-t_frames[-2]).total_seconds())) if not ret: logger.critical("Unknown error capturing a frame from cam {}!") elif save_as_video: video_writer.write(frame) else: # Save as still image cv2.imwrite(os.path.join(out_folder, "cam_{}_f{:05d}_{}.jpg".format(cam, len(t_frames), t_frames[-1].strftime("%H-%M-%S-%f"))), frame) t_save = datetime.now() except KeyboardInterrupt: logger.notice("Stopping cam recording!") finally: video_capture.release() info_filename = os.path.join(out_folder, "cam_{}_{}.h5".format(cam, t_start)) with h5py.File(info_filename) as hf: hf.attrs["t_start"] = t_start hf.attrs["fps"] = fps hf.attrs["width"] = frame_dimensions[0] hf.attrs["height"] = frame_dimensions[1] hf.create_dataset("t_frames", data=np.array([t.timestamp() for t in t_frames])) logger.success("Goodbye from cam {} recording!".format(cam))
def create_symlinks(ARDUINO_DIR, subdir): ACTUAL_DIR = os.path.join(ARDUINO_DIR, subdir) # Make it generic so we can symlink Arduino/libraries as well as Arduino/hardware # Create directory if it doesn't exist if not os.path.isdir(ACTUAL_DIR): logger.debug("Arduino '{}' directory does not exist - Creating".format(subdir)) os.makedirs(ACTUAL_DIR) # Update all libraries (using git submodule) logger.notice("Making sure you have the latest version of each submodule/library...") call(["git", "submodule", "init"]) call(["git", "submodule", "update"]) logger.success("All submodules updated :)") # Create symbolic links src_paths, dst_paths = get_src_and_dst_paths(ARDUINO_DIR, subdir) for src, dst in zip(src_paths, dst_paths): make_symlink(src, dst) logger.success("Done! :)") return True
def received_message(self, msg): if msg.is_text: return # Ignore Geophone ID message (eg: Geophone_AABBBCC) # Parse the message: '<' for Little-Endian, 'H' for uint16_t msg_format = '<' + 'H' * (len(msg.data) / 2) msg_vals = unpack(msg_format, msg.data) msg_id = msg_vals[0] msg_vals = msg_vals[1:] cvs_vals = ','.join(map( str, msg_vals)) # Convert each item to str then join with ',' # Check if we need to start a new file if datetime.now() > self.deadline_new_file: # Close existing file if necessary if self.output_file_handle: self.output_file_handle.close() logger.verbose("Closed file: '{}' (it's been {}s)".format( self.output_filename, self.DELTA_NEW_FILE.total_seconds())) # And create a new one self.generate_new_filename() self.output_file_handle = open(self.output_filename, 'w') # Write the parsed message to the file try: # In case the file has been closed (user stopped data collection), surround by try-except self.output_file_handle.write(cvs_vals + ',') except Exception as e: logger.error("Couldn't write to '{}'. Error: {}".format( self.output_filename, e)) if self.last_msg_id is not None and msg_id != self.last_msg_id + 1: logger.notice( "Received data from '{}' (msg ID {})! WARNING: {} packet(s) lost: last msg ID was {}!" .format(self.url, msg_id, msg_id - self.last_msg_id - 1, self.last_msg_id)) else: logger.debug("Received data from '{}' (msg ID {})!".format( self.url, msg_id)) self.last_msg_id = msg_id
def collect_BNO055_data(experiment_t_start=None, serial_port='/dev/cu.SLAB_USBtoUART', baud_rate=115200, out_base_folder='data', out_filename_prefix='BNO055_', imu_ready_queue=None): # NOTE: In order to allow for multiple simultaneous IMUs, experiment_t_start indicates the name of the enclosing folder where the data will be saved, # and each one will have their own imu_t_start indicating the precise time when each IMU was rebooted (and therefore its data started logging) logger.info("Connecting to {}...".format(serial_port)) s = serial.Serial(serial_port, baud_rate) logger.success("Successfully connected! Please reboot the ESP32") # Initialize variables fields_to_save = init_fields_to_save() data_block = SensorData.DataBlock() imu_t_start = None F_samp = 0 try: # Read serial until we receive the " -- SETUP COMPLETE -- " message while True: l = s.readline().rstrip() # Read a line (removing any trailing \r\n) logger.debug(l) if l == b'-- SETUP COMPLETE --': logger.notice("Esp32 is done booting, collecting data until Ctrl+C is pressed!") break # Update imu_t_start to the actual time the data collection started imu_t_start = datetime.now() if experiment_t_start is None: experiment_t_start = imu_t_start # If user didn't specify an experiment t_start, it's probably only collecting data for 1 IMU -> Use imu_t_start to name the data folder if imu_ready_queue is not None: # Pass the current time through the queue to notify the main process to start recording the camera imu_ready_queue.put(imu_t_start) # Collect data (read samples and append them to fields_to_save) last_msg_id = None while True: pb_len = struct.unpack('<H', s.read(2))[0] # Read 2 bytes that indicate how long the proto message will be and convert to uint16 pb = s.read(pb_len) # Read the proto contents data_block.ParseFromString(pb) # Decode them logger.info("Message received: {} (t={:.6f})".format(data_block.id, data_block.t_latest.seconds + data_block.t_latest.nanos/1e9)) # Check if any data got lost (hopefully not :D) if last_msg_id is None: F_samp = data_block.F_samp # Store the sampling frequency so we can save it in the file elif data_block.id - last_msg_id > 1: n_lost = data_block.id - last_msg_id - 1 logger.critical("Lost {} packet{}! (Previous message ID was {}, current is {})".format(n_lost, 's' if n_lost>1 else '', data_block.id, last_msg_id)) last_msg_id = data_block.id # Append new data to fields_to_save for field_name, field_children in fields_to_save.items(): field_children_values = getattr(data_block, field_name) for axis, axis_values in field_children.items(): axis_new_values = getattr(field_children_values, axis) # Fetch new sensor readings axis_values.append(axis_new_values) if isinstance(axis_new_values, int) else axis_values.extend(axis_new_values) # Append values except KeyboardInterrupt: logger.notice("Stopping data collection!") finally: # Close serial port and save all data to a file s.close() save_data_to_file(fields_to_save, out_base_folder, experiment_t_start, out_filename_prefix, imu_t_start, F_samp) logger.success("Goodbye from BNO055 data collection!")
def build_protos(): logger.notice("Building message protobufs...") call(["./build-protos.sh"], cwd="protos") logger.notice( "Hopefully everything went right [check the output above] ;)")