action='store_true', help="Temporary files will be removed") parser.add_argument("-q", "--quiet", dest="quiet", action='store_true', help="Nothing will be printed in STDERR") args = parser.parse_args() from candidatesreader import NBestList import codecs import numpy as np if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) L.set_logger(os.path.abspath(args.out_dir), 'train_log.txt') L.print_args(args) output_nbest_path = args.out_dir + '/augmented.nbest' shutil.copy(args.input_nbest, output_nbest_path) with open(args.weights, 'r') as input_weights: lines = input_weights.readlines() if len(lines) > 1: L.warning( "Weights file has more than one line. I'll read the 1st and ignore the rest." ) weights = np.asarray(lines[0].strip().split(" "), dtype=float) prefix = os.path.basename(args.input_nbest) input_aug_nbest = NBestList(output_nbest_path, mode='r')
required=True, help="Input n-best file") parser.add_argument("-o", "--output-nbest", dest="output_nbest_path", required=True, help="Output n-best file") parser.add_argument( "-f", "--feature", dest="feature_string", required=True, help= "feature initializer, e.g. LM('LM0','/path/to/lm_file', normalize=True)") args = parser.parse_args() L.set_logger(os.path.abspath(os.path.dirname(args.output_nbest_path)), 'augment_log.txt') L.print_args(args) print( '+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++' ) print('[' + args.feature_string + ']') print( '+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++' ) features = eval('[' + args.feature_string + ']') augment(features, args.source_path, args.input_nbest_path, args.output_nbest_path) logger.info(L.green('Augmenting done.'))